OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3318–3332

Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights

Andrea Alù and Nader Engheta  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3318-3332 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possibility of making a given object transparent to the impinging radiation, or cloaking it, by employing a suitable metamaterial or plasmonic cover has been recently studied theoretically, showing how this technique may overcome the limitations of other currently available techniques. Here we discuss the underlying mechanisms, physical insights and some computer simulations on the role of such homogeneous isotropic metamaterial covers near their plasma frequency in order to dramatically reduce the fields scattered by a given object. Not requiring any absorptive process, any anisotropy or inhomogeneity, and any interference cancellation, in this contribution we demonstrate, using full-wave numerical simulations, how a homogeneous isotropic plasmonic material shell may basically “re-route” the impinging field in such a way to make dielectric and even conducting or metallic objects of a certain size nearly transparent to an outside observer placed in its near as well as in its far field. In addition, it is discussed in detail how this technique, relying on a non-resonant phenomenon, is fairly robust to relatively high variations of the shape and of the geometrical and electromagnetic properties of the cloaked object.

© 2007 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials

ToC Category:

Original Manuscript: February 1, 2007
Revised Manuscript: February 27, 2007
Manuscript Accepted: February 27, 2007
Published: March 19, 2007

Andrea Alù and Nader Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).
  2. J. Ward, "Towards invisible glass," Vacuum 22, 369-375 (1972). [CrossRef]
  3. A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  6. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994). [CrossRef]
  7. G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006). [CrossRef]
  8. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  9. L. Landau, and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).
  10. R. W. Ziolkowski, and N. Engheta, (guest eds.), IEEE Trans. Antennas Propag. 51, 2546-2750 (2003). [CrossRef]
  11. W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. 10, 82-95 (1962). [CrossRef]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  13. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. M. Kerker, "Invisible bodies," J. Opt. Soc. Am. 65, 376-379 (1975). [CrossRef]
  16. CST Microwave StudioTM 5.0, CST of America, Inc., www.cst.com.
  17. R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).
  18. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (1836 KB)     
» Media 2: GIF (1964 KB)     
» Media 3: GIF (1961 KB)     
» Media 4: GIF (2272 KB)     
» Media 5: GIF (1739 KB)     
» Media 6: GIF (2222 KB)     
» Media 7: GIF (2736 KB)     
» Media 8: GIF (3040 KB)     
» Media 9: GIF (2538 KB)     
» Media 10: GIF (2332 KB)     
» Media 11: GIF (2306 KB)     
» Media 12: GIF (2468 KB)     
» Media 13: GIF (2469 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited