OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3348–3360

Coherent and incoherent SHG in fibrillar cellulose matrices

Oleg Nadiarnykh, Ronald LaComb, Paul J. Campagnola, and William A. Mohler  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3348-3360 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Second Harmonic Generation (SHG) microscopy probes the organization of tissue or material structure through morphological and polarization analyses. In terms of diagnostic or analytical potential, it is important to understand the coherent and incoherent aspects of the emission in highly scattering environments. It is also of fundamental importance whether the SHG polarization signatures are retained in such turbid media. We examine these issues for purified cellulose specimens, which, in analogy to structural proteins, comprise highly birefringent and chiral fibrillar structures. In these matrices we observe predominantly coherent forward directed emission as well as backwards contrast consisting of direct, coherent emission and an incoherent component arising from multiply scattered forward directed SHG. These processes display a pronounced depth dependence evidenced by changes in morphology as well in the measured forward-backwards ratio (F/B). Specifically, from regions near the surface the backwards channel displays small fibrils not present in the forward emission. In addition, at depths beyond one mean free path, the fibril morphologies become highly similar, suggesting the observed backwards contrast is also comprised of a component that arises from multiple scattering of the initially forward directed wave. The depth dependence of the forward to backward ratio is consistent with Monte Carlo simulations of photon diffusion based on the measured scattering coefficient μs of 75 cm-1 and anisotropy factor, g=0.94 at the SHG wavelength. Consistent with the experimental observations, these simulations indicate that the backwards channel becomes increasingly incoherent with increasing depth into the specimen. We also demonstrate that the polarization dependence of the SHG can be measured through 500 μ of thickness. Similarly, the SHG signal anisotropy is largely preserved through this depth with only a slight depolarization being observed.

© 2007 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:

Original Manuscript: December 7, 2006
Revised Manuscript: January 14, 2007
Manuscript Accepted: January 17, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Oleg Nadiarnykh, Ronald B. LaComb, Paul J. Campagnola, and William A. Mohler, "Coherent and incoherent SHG in fibrillar cellulose matrices," Opt. Express 15, 3348-3360 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues," Biophys. J. 82, 493-508 (2002). [CrossRef]
  2. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. U S A 99, 11014-11019 (2002). [CrossRef] [PubMed]
  3. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005). [CrossRef]
  4. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the Myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys. J. 90, 693-703 (2006). [CrossRef]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. U S A 100, 7075-7080 (2003). [CrossRef] [PubMed]
  6. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, "Studies of (2)/(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy," Biophys. J. 86, 3914-3922 (2004). [CrossRef] [PubMed]
  7. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003). [CrossRef] [PubMed]
  8. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  9. M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express 13, 5791-5797 (2005). [CrossRef] [PubMed]
  10. L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  11. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2467 (1983). [CrossRef] [PubMed]
  12. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U S A 102, 16807-16812 (2005). [CrossRef] [PubMed]
  13. K. Beck and B. Brodsky, "Supercoiled Protein Motifs: The collagen triple-helix and the alpha-helical coiled coil," J. Struct. Biol. 122, 17-29 (1998). [CrossRef] [PubMed]
  14. V. Ottani, M. Raspanti, and A. Ruggeri, "Collagen structure and functional implications," Micron 32, 251-260 (2001). [CrossRef]
  15. T. Itoh and J. R.M. Brown, "The assembly of cellulose microfibrils in Valonia macrophysa," Planta 160, 372-381 (1984). [CrossRef]
  16. R. M. J. Brown, A. C. Millard, and P. J. Campagnola, "Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy," Opt. Lett. 28, 2207-2209 (2003). [CrossRef] [PubMed]
  17. G. Helenius, H. Backdahl, A. Bodin, U. Nannmark, P. Gatenholm, and B. Risberg, "In vivo biocompatibility of bacterial cellulose," J. Biomed. Mater. Res. A 76(2), 431-438 (2006).
  18. H. Li and S. Xie, "Measurement method of the refractive index of biotissue by total internal reflection," Appl. Opt. 35, 1793-1795 (1996). [CrossRef] [PubMed]
  19. J. Reichman, "Determination of absorption and scattering coefficients for nonhomogeneous media. 1: Theory," Appl. Opt. 12, 1811-1815 (1973). [CrossRef] [PubMed]
  20. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, "Extinction and absorption coefficients and scattering phase functions of human tissues in vitro," Appl. Opt. 28, 2318-2324 (1989). [CrossRef] [PubMed]
  21. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, "Optical biopsy of fixed human skin with backward-collected optical harmonics signals," Opt. Express 13, 8231-8242 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited