OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3361–3371

Efficient fluorescence inhibition patterns for RESOLFT microscopy

Jan Keller, Andreas Schönle, and Stefan W. Hell  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3361-3371 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By exploiting the saturation of a reversible single photon transition, RESOLFT microscopy is capable of resolving three dimensional structures inside specimen with a resolution that is no longer limited by the wavelength of the light in use. The transition is driven by a spatially varying intensity distribution that features at least one isolated point, line or plane with zero intensity and the resolution achieved depends critically on the field distribution around these zeros. Based on a vectorial analysis of the image formation in a RESOLFT microscope, we develop a method to effectively search for optimal zero intensity point patterns under typical experimental conditions. Using this approach, we derived a spatial intensity distribution that optimizes the focal plane resolution. Moreover, we outline a general strategy that allows optimization of the resolution for a given experimental situation and present solutions for the most common cases in biological imaging.

© 2007 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(180.2520) Microscopy : Fluorescence microscopy
(220.1230) Optical design and fabrication : Apodization

ToC Category:

Original Manuscript: January 10, 2007
Revised Manuscript: February 16, 2007
Manuscript Accepted: February 26, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Jan Keller, Andreas Schönle, and Stefan W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Arch. f.Mikr. Anat. 9, 413-420 (1873). [CrossRef]
  2. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  3. L. Moreaux, O. Sandre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000). [CrossRef]
  4. A. Schönle, J. Keller, B. Harke, and S. Hell, "Diffraction Unlimited Far-Field Fluorescence Microscopy," in Handbook of Biological Nonlinear Optical Microscopy, M. Masters and P. So, eds. (Oxford University Press, Oxford, 2007).
  5. S. Hell, "Toward fluorescence nanoscopy," Nature Biotechnol. 21, 1347-1355 (2003). [CrossRef]
  6. S. Hell, "Strategy for far-field optical imaging and writing without diffraction limit," Phys. Lett. A 326, 140-145 (2004). [CrossRef]
  7. S.W. Hell, M. Dyba, and S. Jakobs, "Concepts for nanoscale resolution in fluorescence microscopy," Curr. Opin. Neurobio. 14(5), 599-609 (2004). [CrossRef]
  8. S. Hell and S. A., "Nanoscale resolution in Far-Field Fluorescence Microscopy," in Science of Microscopy, P. Hawkes and J. Spence, eds. (Springer, 2006).
  9. S. Hell and S. A., "Nanoscopy: The Future of Optical Microscopy," in Biomedical Optical Imaging, J. Fujimoto and D. Farkas, eds. (Oxford University Press, Oxford, 2006).
  10. M. Hofmann, C. Eggeling, S. Jakobs, and S. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. USA 102, 17,565- 17,569 (2005). [CrossRef]
  11. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  12. S.W. Hell andM. Kroug, "Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1995). [CrossRef]
  13. V. Westphal and S. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143,903 (2005). [CrossRef]
  14. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. USA 103, 11,440-11,445 (2006). [CrossRef]
  15. R. Heintzmann, T. M. Jovin, and C. Cremer, "Saturated patterned excitation microscopy - A concept for optical resolution improvement," J. Opt. Soc. Am. A: Optics and Image Science, and Vision 19, 1599-1609 (2002). [CrossRef]
  16. T. Klar, E. Engel, and S. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066,613,1-9 (2001). [CrossRef]
  17. P. Török and P. R. T. Munro, "The use of Gauss-Laguerre vector beams in STED microscopy," Opt. Express 12, 3605-3617 (2004). [CrossRef] [PubMed]
  18. N. Bokor and N. Davidson, "Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam," Opt. Lett. 31, 149-151 (2006). [CrossRef] [PubMed]
  19. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, "STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis." Nature 440, 935 - 939 (2006). [CrossRef] [PubMed]
  20. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. Lond. A 253, 358-379 (1959). [CrossRef]
  21. W. J. Tango, "Circle Polynomials of Zernike and Their Application in Optics," Appl. Phys. 13, 327-332 (1977). [CrossRef]
  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys. 21, 1087-1092 (1953). [CrossRef]
  23. J. A. Nelder and R. Mead, "A Simplex-Method for Function Minimization," Comput. J. 7, 308-313 (1965).
  24. T. Klar and S. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999). [CrossRef]
  25. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited