OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3396–3408

Self-imaging silicon Raman amplifier

Varun Raghunathan, Hagen Renner, Robert R. Rice, and Bahram Jalali  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3396-3408 (2007)
http://dx.doi.org/10.1364/OE.15.003396


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new type of waveguide optical amplifier. The device consists of collinearly propagating pump and amplified Stokes beams with periodic imaging of the Stokes beam due to the Talbot effect. The application of this device as an Image preamplifier for Mid Wave Infrared (MWIR) remote sensing is discussed and its performance is described. Silicon is the preferred material for this application in MWIR due to its excellent transmission properties, high thermal conductivity, high damage threshold and the mature fabrication technology. In these devices, the Raman amplification process also includes four-wave-mixing between various spatial modes of pump and Stokes signals. This phenomenon is unique to nonlinear interactions in multimode waveguides and places a limit on the maximum achievable gain, beyond which the image begins to distort. Another source of image distortion is the preferential amplification of Stokes modes that have the highest overlap with the pump. These effects introduce a tradeoff between the gain and image quality. We show that a possible solution to this trade-off is to restrict the pump into a single higher order waveguide mode.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 29, 2006
Revised Manuscript: January 26, 2007
Manuscript Accepted: January 26, 2007
Published: March 19, 2007

Citation
Varun Raghunathan, Hagen Renner, Robert R. Rice, and Bahram Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Non linear fiber optics (Academic Press San Diego 2001).
  2. K. Suto, T. Kimura, T. Saito, and J. Nishizawa, "Raman amplification in GaP-AlxGa1-xP waveguides for light frequency discrimination," IEE Proc.: Optoelectron 145, 105-108 (1998). [CrossRef]
  3. R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," Electron. Lett. 38, 1352-1354 (2002). [CrossRef]
  4. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron 27, 3-56, (2003). [CrossRef]
  5. N. Bloembergen, "Multimode effects in stimulated Raman emission," Phys. Rev. Lett. 13, 720-724 (1964). [CrossRef]
  6. P. Lallemand and N. Bloembergen, "Multimode effects in the gain of Raman amplifiers and oscillators I. Oscillators," Appl. Phys. Lett. 6,210-212 (1965). [CrossRef]
  7. P. Lallemand and N. Bloembergen, "Multimode effects in the gain of Raman amplifiers and oscillators II. Amplifiers," Appl. Phys. Lett. 6, 2112-2123 (1965). [CrossRef]
  8. S. H. Baek and W. B. Roh, "Single-mode Raman fiber laser based on a multimode fiber," Opt. Lett. 29, 153-155 (2004). [CrossRef] [PubMed]
  9. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  10. H. J. Baker, J. R. Lee, and D. R. Hall, "Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers," Opt. Express 10, 297-302 (2002). [PubMed]
  11. I. T. McKinnie, J. E. Koroshetz, W. S. Pelouch, D. D. Smith, J. R. Unternahrer, and S. W. Henderson, "Self-imaging waveguide Nd:YAG laser with 58% slope efficiency," Conference on Lasers and Electro-Optics (CLEO), CTuP2, (2002).
  12. M. S. Salisbury, P. F. McManamon, and B. D. Duncan, "Optical-fiber preamplifiers for ladar detection and associated measurement for improving the signal-to-noise ratio," Opt. Eng. 33, 4023-4032 (1994). [CrossRef]
  13. L. K. Calmes, J. T. Murray, W. L. Austin, and R. C. Powell, "Solid state Raman image amplifier," Proc. SPIE 3382, 57-67 (1998). [CrossRef]
  14. A. Kier, ed., "Mid infrared semiconductor optoelectronics," Springer series in Optoelectronics (2006).
  15. V. Raghunathan, R. Shori, O. M. Stafsudd, B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared Silicon Raman laser," Phys. Status Solidi A 203, R38-R40 (2006). [CrossRef]
  16. S. J. Garth and R. A. Sammut, "Theory of stimulated Raman scattering in two-mode optical fibers," J. Opt. Soc. Am. B. 10, 2040-2047 (1983). [CrossRef]
  17. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Redina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J Sel.Top. Quantum Electron 4, 938-947 (1998). [CrossRef]
  18. W. C. Hurlburt, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, and Y. S. Lee, "Multiphoton absorption and nonlinear refraction of GaAs in the mid infrared," Conference on Lasers and Electro-Optics (CLEO/QELS), QThM3 (2006).
  19. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, "Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications," Opt. Express 12, 5125-5130 (2004). [CrossRef] [PubMed]
  20. A. E. Siegman, "How to (may be) measure laser beam quality," Tutorial OSA annual meeting (1997).
  21. A. Brignon, G. Feugnet, J. P. Huignard, and J. P. Pocholle, "Large-field-of-view, high-gain, compact diode-pumped Nd:YAG amplifier," Opt. Lett. 22, 1421-1423 (1997). [CrossRef]
  22. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Norwell, "Influence of restricted mode excitation on bandwidth of multimode fiber links," IEEE Photon. Technol. Lett. 10, 534-536 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited