OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3502–3506

Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals

Gaoxin Qiu, Kevin Vynck, David Cassagne, and Emmanuel Centeno  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3502-3506 (2007)
http://dx.doi.org/10.1364/OE.15.003502


View Full Text Article

Enhanced HTML    Acrobat PDF (855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid 2D-3D heterostructures are a very promising way for waveguiding light in 3D photonic structures. Single-mode waveguiding of light has been demonstrated in heterostructures where a 2D photonic crystal consisting of a triangular lattice of silicon rods in air was intercalated between two silicon inverse opals. In this paper, we show that by using a graphite lattice of rods instead of a triangular one, it is possible to enlarge the maximal single-mode waveguiding bandwidth by more than 70 %, i.e. up to 129 nm centered on 1.55 μm. The sensibility to the 2D layer structure parameters is lower, offering enhanced experimental flexibility in the design of the structure.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: January 25, 2007
Revised Manuscript: March 3, 2007
Manuscript Accepted: March 12, 2007
Published: March 19, 2007

Citation
Gaoxin Qiu, Kevin Vynck, David Cassagne, and Emmanuel Centeno, "Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals," Opt. Express 15, 3502-3506 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. Meade, and J. Winn, Photonic crystals: Molding the flow of light (Princeton University Press, Princeton, N.J., 1995).
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  4. S. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  5. V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161103 (2006). [CrossRef]
  6. P. Braun, S. Rinne, and F. García-Santamaría, "Introducing defects in 3D photonic crystals: State of the art," Adv. Mater. 18, 2665-2678 (2006). [CrossRef]
  7. A. Chutinan, S. John, and O. Toader, "Diffractionless flow of light in all-optical microchips," Phys. Rev. Lett. 90, 123901 (2003). [CrossRef] [PubMed]
  8. Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer Academic Publishers, Dordrecht, 1996).
  9. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Mezeguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  10. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  11. V. Lousse, and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-878 (2005). [CrossRef]
  12. A. Chutinan, and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules and simulations," Phys. Rev. E 71, 026605 (2005). [CrossRef]
  13. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic band gaps," Phys. Rev. B 53, 7134-7142 (1996). [CrossRef]
  14. S. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited