OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3575–3580

Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects

Kirk A. Fuller and David D. Smith  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3575-3580 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Calculations, based on modal analysis of scattering and absorption by compound spheres indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors for optical processes associated with the nanoparticles of 103 – 104 are predicted for realistic experimental conditions using homogenous microspheres. This mechanism for cascaded photoenhancement thus has the potential of dramatically increasing the sensitivities of vibrational and photoluminescent spectroscopies.

© 2007 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:

Original Manuscript: October 25, 2006
Revised Manuscript: December 22, 2006
Manuscript Accepted: January 16, 2007
Published: March 19, 2007

Kirk A. Fuller and David D. Smith, "Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects," Opt. Express 15, 3575-3580 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003). [CrossRef]
  2. S. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  4. K. Kneipp, and H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002). [CrossRef]
  5. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  6. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fusedsilica microspheres in the infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  7. S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, "Room-temperature microparticlebased persistent hole-burning memory spectroscopy," J. Opt. Soc. Am. B 9, 4081-4093 (1992). [CrossRef]
  8. R. K. Chang  and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996). [CrossRef]
  9. F. Vollmer, D. Braun, A. Libchaber,M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant cavity," Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities," Biophys. J. 85, 1974-1979 (2003). [CrossRef] [PubMed]
  11. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  12. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  13. W. R. Boyd and J. E. Heebner, "Sensitive disk resonantor photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  14. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002). [CrossRef]
  15. E. Krioukov, D. J.W. Klunder, A. Driessen, J. Greve, and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett. 27, 1504-1506 (2002). [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. D. D. Smith and K. A. Fuller, "Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres," J. Opt. Soc. Am. B 19, 2449-2455 (2002). [CrossRef]
  18. K. A. Fuller and D. W. Mackowski, "Light Scattering by Compounded Spherical Particles," in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000).
  19. K. A. Fuller and D. D. Smith, "Local intensity enhancements in spherical microcavities: implications for photonic chemical and biological sensors," in The 2004 NASA Faculty Fellowship Program Research Reports, J. Bland, ed. (Marshall Space Flight Center, 2005, or http://vortex.nsstc.uah.edu/amuor/nffp04.html).
  20. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  21. K. H. Drexhage, Progress in Optics, vol. 12 (E. Wolf Ed., North-Holland, Amsterdam, 1974).
  22. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, "Radiative decay engineering," Analytical Biochem. 301, 261 (2002). [CrossRef]
  23. H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," App. Phys. Lett. 69, 2327 (1996). [CrossRef]
  24. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205,318 (2005). [CrossRef]
  25. L. M. Folan, S. Arnold, and S. D. Druger, "Enhanced energy transfer within a microparticle," Chem. Phys. Lett. 118, 322-327 (1985). [CrossRef]
  26. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153,305 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited