OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3619–3628

Statistical analysis of optical turbulence intensity over a 2.33 km propagation path

Arnold Tunick  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3619-3628 (2007)
http://dx.doi.org/10.1364/OE.15.003619


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Refractive index and microclimate fluctuations can significantly affect free-space laser communications. To better understand these physics relationships, optical scintillometer data were collected over a near-horizontal propagation path along with in-situ rooftop measurements of temperature variance. Regression analysis of time-averaged data revealed that fairly high correlation values (i.e., R ≥ 0.80) occurred in 8 of 21 cases studied. Analysis suggests that point sensors can provide valuable information on optical turbulence for extended paths. Additional research is recommended to further explore point measurements and their relation to integrated values of optical turbulence over inhomogeneous paths.

© 2007 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 24, 2007
Revised Manuscript: March 9, 2007
Manuscript Accepted: March 15, 2007
Published: April 2, 2007

Citation
Arnold Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Chiba, "Spot dancing of the laser beam propagated through the turbulent atmosphere," Appl. Opt. 10, 2456-2461 (1971). [CrossRef] [PubMed]
  2. D. L. Fried, G. E. Mevers, and M. P. Keister, "Measurements of laser beam scintillation in the atmosphere," J. Opt. Soc. Am. 57, 787-797 (1967). [CrossRef]
  3. A. Ishimaru, "The beam wave case and remote sensing," in Laser Beam Propagation in the Atmosphere, (Springer-Verlag, 1978), pp. 129-170.
  4. G. Parry, "Measurement of atmospheric turbulence induced intensity fluctuation in a laser beam," Opt. Acta. 28, 715-728 (1981). [CrossRef]
  5. E. L. Andreas, "Estimating Cn2 over snow and sea ice from meteorological data," J. Opt. Soc. Am. 5, 481-495 (1988). [CrossRef]
  6. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, 1971).
  7. M. L. Wesely, "The combined effect of temperature and humidity fluctuations on refractive index," J. Appl. Meteorol. 15, 43-49 (1976). [CrossRef]
  8. M. Vorontsov, G. Carhart, M. Banta, T. Weyrauch, J. Gowens, and J. Carrano, "Atmospheric Laser Optics Testbed (A_LOT): Atmospheric propagation characterization, beam control, and imaging results," Proc. SPIE 5162, 37-48 (2003). [CrossRef]
  9. User’s Guide. LOA-004-xR Long Baseline Optical Anemometer and Atmospheric Turbulence Sensor. Revision 3/20/2003. Optical Scientific, Inc., Gaithersburg, MD (2003). http://www.opticalscientific.com/
  10. S. F. Clifford, G. R. Ochs, and R. S. Lawrence, "Saturation of optical scintillation by strong turbulence," J. Opt. Soc. Am 64, 148-154 (1974). [CrossRef]
  11. J. C. Kaimal and J. J. Finnigan, "Principle of the sonic anemometer and thermometer," in Atmospheric Boundary Layer Flows: Their Structure and Measurement, Appendix 6.1, (Oxford University Press, 1994)
  12. J. L. Lumley and H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience Publishers, 1964).
  13. A. Tunick, "Modeling microphysical influences on optical turbulence in complex areas," Meteorol. Atmos. Phys. (2006). http://www.springerlink.com/content/dh8471650t5u4r67/.
  14. P. Frederickson, K. Davidson, C. Zeisse, and I. Bendall, "A Comparison of Near-Surface Bulk and Scintillation Cn2 during EOSPACE," Proc. SPIE 3433, 77-88 (1998). [CrossRef]
  15. P. Frederickson, K. Davidson, C. Zeisse, and I. Bendall, "Near surface scintillation in a coastal ocean region," Proc. SPIE 3763, 230-238 (1999). [CrossRef]
  16. K. R. Weiss-Wrana, "Turbulence statistics in littoral area," Proc. SPIE 6364, 63640F (2006). [CrossRef]
  17. K. R. Weiss-Wrana and L. S. Balfour, "Statistical analysis of measurements of atmospheric turbulence in different climates," Proc. SPIE 4538, 93-101 (2001). [CrossRef]
  18. A. Tunick, M. Grobaker, and R. Meyers, "Characterizing A_LOT optical turbulence intensity for free-space laser communications," Technical Report, ARL-MR-0657, U.S. Army Research Laboratory (2006). http://stinet.dtic.mil/str/guided-tr.html.
  19. M. L. Wesely and E. C. Alcarez, "Diurnal cycles of the refractive index structure function coefficient," J. Geophys. Res. 78, 6224-6232 (1973). [CrossRef]
  20. K. E. Kunkel and D. L. Walters, "Modeling the diurnal dependence of the optical refractive index structure parameter," J. Geophys. Res. 88, 10999-11004 (1983). [CrossRef]
  21. P. Frederickson, K. Davidson, C. Zeisse, and I. Bendall, "Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods," J. Appl. Meteorol. 39, 1770-1783 (2000). [CrossRef]
  22. A. Tunick, "CN2 model to calculate the micrometeorological influences on the refractive index structure parameter," Environ. Modell. Softw. 18, 165-171 (2003). [CrossRef]
  23. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, 2001).
  24. M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express 14,8929-8946 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited