OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3715–3728

Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking

G. Gagliardi, S. De Nicola, P. Ferraro, and P. De Natale  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3715-3728 (2007)
http://dx.doi.org/10.1364/OE.15.003715


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on an optically-based technique that provides an efficient way to track static and dynamic strain by locking the frequency of a diode laser to a fiber Bragg-grating Fabry-Pérot cavity. For this purpose, a suitable optical frequency discriminator is generated exploiting the fiber natural birefringence and that resulting from the gratings inscription process. In our scheme, a polarization analyzer detects dispersive-shaped signals centered on the cavity resonances without need for additional optical elements in the resonator or any laser-modulation technique. This method prevents degradation of the resonator quality and maintains the configuration relatively simple, demonstrating static and dynamic mechanical sensing below the picostrain level.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(140.2020) Lasers and laser optics : Diode lasers
(260.1440) Physical optics : Birefringence

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 8, 2007
Revised Manuscript: February 21, 2007
Manuscript Accepted: February 21, 2007
Published: April 2, 2007

Citation
G. Gagliardi, S. De Nicola, P. Ferraro, and P. De Natale, "Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking," Opt. Express 15, 3715-3728 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3715


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings," Opt. Lett. 23, 1930-1932 (1998). [CrossRef]
  2. A. Arie, B. Lissak, and M. Tur, "Static Fiber-Bragg Grating strain sensing using frequency-locked lasers," J. Lightwave Technol. 17, 1849-1855 (1999). [CrossRef]
  3. G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13,2377-2384 (2005). [CrossRef] [PubMed]
  4. J. H. Chow, I. C. Littler, G. de Vine, D. E. McClelland, M. B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," J. Lightwave Technol. 23, 1881-1889 (2005). [CrossRef]
  5. L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi, "Demodulation of Fiber Bragg Grating Sensors based on dynamic tuning of a multimode Laser Diode," Appl. Opt. 38, 4751-4759 (1999). [CrossRef]
  6. X. Wan and H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors," Opt. Lett. 27, 1388-1390 (2002). [CrossRef]
  7. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. Littler, "Demonstration of a passive subpicostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005). [CrossRef] [PubMed]
  8. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," J. Opt. A 8, S507-S513 (2006). [CrossRef]
  9. F. Maystre and R. Dandliker, "Polarimetric fiber optical sensor with high sensitivity using a Fabry-Perot structure," Appl. Opt. 28, 1995-2000 (1989). [CrossRef] [PubMed]
  10. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+," Phys. Rev. Lett. 85, 2462-2465 (2000). [CrossRef] [PubMed]
  11. A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992). [CrossRef] [PubMed]
  12. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for Quantum Logic," Phys. Rev. Lett. 75, 4710-4713 (1995). [CrossRef] [PubMed]
  13. G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, and F. Vedel, "Long-term stabilization of the length of an optical reference cavity," Rev. Sci. Instrum. 76, 123101 (2005). [CrossRef]
  14. A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, "Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 105," Opt. Lett. 26, 1562-1564 (2001). [CrossRef]
  15. R. L. Barger, M. S. Sorem, and J. H. Hall, "Frequency stabilization of a CW dye laser," Appl. Phys. Lett. 22, 573-577 (1973). [CrossRef]
  16. A. D. White, "Frequency stabilization of gas lasers," IEEE J. Quantum Electron. QE-1, 349-357 (1965). [CrossRef]
  17. T. W. Hansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980). [CrossRef]
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  19. M. Zhu and J. L. Hall, "Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer," J. Opt. Soc. Am. B 10, 802-816 (1993). [CrossRef]
  20. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, "Diode laser with a 1 Hz linewidth," Opt. Lett. 31, 736-738 (2006). [CrossRef] [PubMed]
  21. H. R. Telle and U. Sterr, in Frequency Measurement and Control, A. N. Luiten ed., (Spinger-Verlag, Berlin Heidelberg 2001).
  22. M. de Angelis, G. M. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency-controlled laser source in the near ultraviolet based on doubling of a Semiconductor Diode Laser," Appl. Phys. B 62, 333-338 (1996). [CrossRef]
  23. R. J. Forster and N. Langford, "Polarization spectroscopy applied to the frequency stabilization of rare-earth-doped fiber lasers: a numerical and experimental demonstration," J. Opt. Soc. Am. B 14, 2083-2090 (1997). [CrossRef]
  24. N. J. Frigo, A. Dandridge, and A. B. Tveten, "Technique for elimination of polarization fading in fibre interferometers," Electron. Lett. 20, 319-320 (1984). [CrossRef]
  25. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. 11, 2100-2105 (1994). [CrossRef]
  26. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of Optical Fiber," J. Lightwave Technol. 20, 1463-1469 (2002). [CrossRef]
  27. G. A. Ball, G. Meltz, and W. W. Morey, "Polarimetric heterodyning Bragg-grating fiber-laser sensor," Opt. Lett. 18, 1976-1978 (1993). [CrossRef] [PubMed]
  28. B. J. Eggleton and R. E. Slusher, in Nonlinear Photonic Crystals, B. J. Eggleton and R. E. Slusher eds., (Spinger-Verlag, Berlin Heidelberg 2003).
  29. S. T. Oh, W. Han, U. Paek, and Y. Chung, "Discrimination of temperature and strain with a single FBG based on the birefringence effect," Opt. Express 12, 724-729 (2004). [CrossRef] [PubMed]
  30. J. E. Sipe, L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A 11, 1307-1320 (1994). [CrossRef]
  31. Corning, "SMF-28 Product Information Sheet," (One Riverfront Plaza, Corning, N.Y. 14831, 2001).
  32. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005). [CrossRef] [PubMed]
  33. I. C. M. Littler, T. Grujic, and B. J. Eggleton, "Photothermal effects in fiber Bragg gratings," Appl. Opt.,  45, 4679-4685 (2006). [CrossRef] [PubMed]
  34. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection," Opt. Lett. 18, 72-74 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited