OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3816–3832

Modeling the target acquisition performance of active imaging systems

Richard L. Espinola, Eddie L. Jacobs, Carl E. Halford, Richard Vollmerhausen, and David H. Tofsted  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3816-3832 (2007)
http://dx.doi.org/10.1364/OE.15.003816


View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.3080) Imaging systems : Infrared imaging
(110.4280) Imaging systems : Noise in imaging systems
(280.3420) Remote sensing and sensors : Laser sensors
(290.5930) Scattering : Scintillation

ToC Category:
Imaging Systems

History
Original Manuscript: January 10, 2007
Revised Manuscript: February 20, 2007
Manuscript Accepted: February 27, 2007
Published: April 2, 2007

Citation
Richard L. Espinola, Eddie L. Jacobs, Carl E. Halford, Richard Vollmerhausen, and David H. Tofsted, "Modeling the target acquisition performance of active imaging systems," Opt. Express 15, 3816-3832 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Milton, G. Klager, and T. Bowman, "Low cost sensors for UGVs," G. R. Gerhart, R. W. Gunderson, and C. M. Shoemaker, eds., Proc. SPIE 4024, 180-191 (2000). [CrossRef]
  2. O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, "Gated viewing for target detection and target recognition," G. W. Kamerman and C. Werner, eds., Proc. SPIE 3707, 432-448 (1999). [CrossRef]
  3. J. Busck, "Underwater 3-D optical imaging with a gated viewing laser radar," Opt. Eng. 44, 116,001 (2005). [CrossRef]
  4. P. Andersson, "Long-range three-dimensional imaging using range-gated laser radar images," Opt. Eng. 45, 034,301 (2006). [CrossRef]
  5. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Heidelberg, Germany, 1975).
  6. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, WA, 2001). [CrossRef]
  7. E. L. Jacobs, R. H. Vollmerhausen, and C. E. Halford, "Modeling active imagers," G. C. Holst, ed., Proc. SPIE 5407, 201-210 (2004). [CrossRef]
  8. K. Krapels, R. N. Driggers, R. H. Vollmerhausen, N. S. Kopeika, and C. E. Halford, "Atmospheric turbulence modulation transfer function for infrared target acquisition modeling," Opt. Eng. 40, 1906-1913 (2001). [CrossRef]
  9. J. W. Goodman, Statistical Optics (Wiley Interscience, New York, NY, 2000).
  10. R. Vollmerhausen, E. Jacobs, and R. Driggers, "New metric for predicting target acquisition performance," Opt. Eng. 43, 2806-2818 (2004). [CrossRef]
  11. P. G. J. Barten, "Evaluation of subjective image quality with the square-root integral method," J. Opt. Soc. Am. A 7, 2024-2031 (1990). [CrossRef]
  12. P. G. J. Barten, Contrast sensitivity of the human eye and its effects on image quality (SPIE Press Monograph, PM72, 1999). [CrossRef]
  13. W. Wolfe and G. Zissis, The Infrared Handbook (IRIA ERIM, Ann Arbor, MI, 1993).
  14. R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford, and K. J. Barnard, "Impact of speckle on laser rangegated shortwave infrared imaging system target identification performance," Opt. Eng. 42, 738-746 (2003). [CrossRef]
  15. C. E. Halford, A. L. Robinson, R. G. Driggers, and E. L. Jacobs, "Tilted surfaces in SWIR imagery: speckle simulation and a simple contrast model," submitted to Opt. Eng. (2007). [CrossRef]
  16. R. J. Hill, "Models of the scalar spectrum for turbulent advection," J. Fluid Mech. 88, 541-562 (1978).
  17. J. R. Dunphy and J. Kerr, "Scintillation measurements for large integrated path turbulence," J. Opt. Soc. Am. 63, 981-986 (1973). [CrossRef]
  18. M. E. Gracheva, A. S. Gurvich, S. S. Kasharov, and V. V. Pokasov, "Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation," in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, NY, 1978).
  19. V. A. Banakh and V. L. Mironov, Lidar in a Turbulence Atmosphere (Artech House, Boston, MA, 1987).
  20. L. C. Andrews and R. L. Phillips, "I-K distribution as a universal propagation model of laser beams in atmospheric turbulence," J. Opt. Soc. Am. A 2, 160-163 (1985). [CrossRef]
  21. D. H. Tofsted and S. G. O’Brien, "Simulation of atmospheric turbulence image distortion and scintillation effects impacting short wave infrared (SWIR) active imaging systems," W. R.Watkins, D. Clement, and W. R. Reynolds, eds., Proc. SPIE 5432, 160-171 (2004). [CrossRef]
  22. J. A. Fleck, J. R. Morris, and M. J. Feit, "Time-dependent propagation of high-energy laser-beams through atmosphere," Appl. Phys. 10, 129-160 (1976). [CrossRef]
  23. A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).
  24. W. G. Tam and A. Zardecki, "Multiple scattering corrections to the Beer-Lambert Law. I: Open Detector," Appl. Opt. 21, 2405-2412 (1980). [CrossRef]
  25. D. H. Tofsted, "Turbulence Simulation: On Phase and Deflector Screen Generation," Tech. rep., U.S. Army Res. Lab. (2001).
  26. M. S. Belen’kii, "Effect of the inner scale of turbulence on the atmospheric modulation transfer function," J. Opt. Soc. Am. A 13, 1078-1082 (1996). [CrossRef]
  27. D. H. Tofsted, "Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum," Tech. rep., U.S. Army Res. Lab. (2000).
  28. T. von Karman, "Progress in the statistical theory of turbulence," Proc. Natl. Acad. Sci. U.S. 34, 530-539 (1948). [CrossRef]
  29. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Cote, "Spectral characteristics of surface-layer turbulence," Q. J. Roy. Met. Soc. 98, 563-589 (1972). [CrossRef]
  30. E. Jacobs, R. L. Espinola, C. Halford, and D. Tofsted, "Beam scintillation effects on identification performance with active imaging systems," R. G. Driggers and D. A. Huckridge, eds., Proc. SPIE 5987, 598,703-1-598,703-11 (2005).
  31. K. Weiss-Wrana, "Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions," iS. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 58,910D-1-58,910D-12 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited