OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3888–3901

Modeling and design of irregularly arrayed waveguide gratings

Feng Xiao, Guangyuan Li, and Anshi Xu  »View Author Affiliations

Optics Express, Vol. 15, Issue 7, pp. 3888-3901 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (633 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we propose a concept of irregularly arrayed waveguide gratings (IAWGs). By replacing regularly arrayed waveguides of conventional AWGs with irregularly arrayed ones, we found theoretically that the IAWGs have arbitrary free spectral ranges and are suitable to provide a large number of channels with relatively smaller circuit regions. A Fourier optics model is presented, which is able to calculate the transmission characteristics between any arbitrary pair of input/output ports in either conventional AWGs or IAWGs. As an example, a 1080-channel IAWG with 0.199 nm spacing is designed and simulated. Results show this device can be contained in a 6-inch wafer and provide two work patterns: all 1080 channels with a relatively high crosstalk of about -20 dB, and 128 successive channels which can be arbitrarily moveable over the range of the 1080 channels with a crosstalk of about -32 dB.

© 2007 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(070.6110) Fourier optics and signal processing : Spatial filtering
(230.1150) Optical devices : All-optical devices
(230.1950) Optical devices : Diffraction gratings
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2007
Revised Manuscript: March 2, 2007
Manuscript Accepted: March 2, 2007
Published: April 2, 2007

Feng Xiao, Guangyuan Li, and Anshi Xu, "Modeling and design of irregularly arrayed waveguide gratings," Opt. Express 15, 3888-3901 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit and A. C. Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996). [CrossRef]
  2. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002). [CrossRef]
  3. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita, and A. Himeno, "400-channel arrayedwaveguide grating with 25 GHz spacing using 1.5%−∆ waveguides on 6-inch Si wafer," Electron. Lett. 37, 576-577 (2001). [CrossRef]
  4. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, "Low-crosstalk 10-GHz-spaced 512-channel arrayedwaveguide grating multi/demultiplexer fabricated on a 4-in wafer," IEEE Photon. Technol. Lett. 13, 1182-1184 (2001). [CrossRef]
  5. K. Takada, M. Abe, T. Shibata, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as a primary filter," IEEE Photon. Technol. Lett. 14,648-650 (2002). [CrossRef]
  6. J. H. Abeles and R. J. Deri, "Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays," Appl. Phys. Lett. 53, 1375-1377 (1988). [CrossRef]
  7. A. Ishimaru and H. -S. Tuan, "Theory of frequency scanning of antennas," IEEE Trans. Antennas Propag. 10,144-150 (1962).
  8. F. Xiao, W. W. Hu, and A. S. Xu, "Optical phased-array beam steering controlled by wavelength," Appl. Opt. 44, 5429-5433 (2005). [CrossRef] [PubMed]
  9. P. Munoz, D. Pastor, and J. Capmany, "Modeling and design of arrayed waveguide gratings," J. Lightwave Technol. 20, 661-674 (2002). [CrossRef]
  10. I. Molina-Fernandez and J. G. Wanguemert-Perez, "Improved AWG Fourier optics model," Opt. Express 12, 4804-4821 (2004). [CrossRef] [PubMed]
  11. M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propag. 50, 1732-1742 (2002). [CrossRef]
  12. A. Lommi, A. Massa, E. Storti, and A. Trucco, "Sidelobe reduction in sparse linear arrays by genetic algorithms," Microw. Opt. Technol. Lett. 32, 194-196 (2002). [CrossRef]
  13. D. W. Boeringer and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag. 52, 771-779 (2004). [CrossRef]
  14. J. Y. Yang, X. Q. Jiang, M. H. Wang, and Y. L. Wang, "Two-dimensional wavelength demultiplexing employing multilevel arrayed waveguides," Opt. Express 12, 1084-1089 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited