OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3940–3947

Numerical simulation and optimization of Q-switched 2 μm Tm,Ho:YLF laser

Oleg A. Louchev, Yoshiharu Urata, and Satoshi Wada  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3940-3947 (2007)
http://dx.doi.org/10.1364/OE.15.003940


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical simulation suggests that for obtaining a giant (G) pulse from a 2.06 μm solid state Tm,Ho:YLF laser by the active Q-switching technique, the optimal Ho concentration will be higher than that used in normal operation. In simulations of 500 ns G-pulse generation maximal efficiency occurred at 6 % Tm and 1.0 % Ho, in contrast with 0.4% Ho found to be optimal for the normal pulse generation. Maximal energy output from Tm,Ho:YLF lasers can be achieved by incorporating a delay of about 0.7 ms between 0.5 ms 780 nm LD pulsed pumping and the start of Q-switched G-pulse operation.

© 2007 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 2, 2007
Manuscript Accepted: March 8, 2007
Published: April 2, 2007

Citation
Oleg A. Louchev, Yoshiharu Urata, and Satoshi Wada, "Numerical simulation and optimization of Q-switched 2 μm Tm,Ho:YLF laser," Opt. Express 15, 3940-3947 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Tyminski, D. M. Franich, and M. Kokta, "Gain dynamics of Tm,Ho:YAG pumped in near infrared," J. Appl. Phys. 65, 3181-3188 (1989). [CrossRef]
  2. V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, "Energy-transfer processes in Y3Al5O12:Tm,Ho," Phys. Rev. B 46, 8018-8026 (1992). [CrossRef]
  3. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, "Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers," Opt. Mater. 1, 111-124 (1992). [CrossRef]
  4. M. G. Jani, R. J. Reeves, R. C. Powell, G. J. Quarles and L. Esterovitz, "Alexandrite-laser excitation of a Tm:Ho:Y3Al5O12 laser," J. Opt. Soc. Am. B 8, 741-746 (1991). [CrossRef]
  5. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, "Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10 Hz," Opt. Lett. 20, 872-874 (1995). [CrossRef] [PubMed]
  6. J. Yu, U. N. Singh, P. Barnes and M. Petros, "125-mJ diode-pumped-injection-seeded HoTmYLF laser," Opt. Lett. 23, 780-782 (1998). [CrossRef]
  7. A. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Relaxation oscillations of the radiation from a 2- m holmium laser with a Cr,Tm,Ho:YSGG crystal," Quantum Electron. 28, 143-146 (1998). [CrossRef]
  8. N. Alpat'ev, V. A. Smirnov, and I. A. Shcherbakov, "Model of an active medium based on YSGG Cr,Tm,Ho crystal," Kvantovaya Elektron. 20, 1105-1110 (1993).
  9. N. P. Barnes, E. D. Filer, C. A. Morison, and C. J. Lee, "Ho:Tm Lasers: Theoretical," IEEE J. Quantum Electron. 32, 92-103 (1996). [CrossRef]
  10. C. J. Lee, G. Han, and N. P. Barnes, "Ho:Tm Lasers: Experiments," IEEE J. Quantum Electron. 32, 104 - 111 (1996). [CrossRef]
  11. G. Rustad and K. Stenersen, "Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion," IEEE J. Quantum Electron. 32, 1645 -1656 (1996). [CrossRef]
  12. D. Bruneau, S. Delmonte, and J. Pelon, "Modeling of Tm, Ho: YAG and Tm, Ho: YLF 2-μm lasers and calculation of extractable energies," Appl. Opt. 37, 8406-8419 (1998). [CrossRef]
  13. G. L. Bourdet and G. Lescroart, "Theoretical modeling and design of a Tm, Ho: YLiF4 microchip laser," Appl. Opt. 38, 3275-3281 (1999). [CrossRef]
  14. S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34,1578-1587 (1998). [CrossRef]
  15. V. Sudesh and K. Asai, Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study," J. Opt. Soc. Am. B 20, 1829-1837 (2003). [CrossRef]
  16. A. Sato, K. Asai and K. Mizutani, "Lasing characteristics and optimizations of diode-side-pumped Tm,Ho:GdVO4 laser," Opt. Lett. 29, 836 -838 (2004). [CrossRef] [PubMed]
  17. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4," J. Appl. Phys. 95, 3255-3271 (2004). [CrossRef]
  18. G. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M. Tonelli, and P. Laporta, "Widely tunable continuous-wave diode-pumped 2-µm Tm-Ho:KYF4 laser," Opt. Lett. 29, 715-717 (2004). [CrossRef] [PubMed]
  19. J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, "Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities," Appl. Opt. 39, 2418-2421 (2000). [CrossRef]
  20. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, "1 J/pulse Q-switched 2 μm solid-state laser," Opt. Lett. 31, 462-464 (2006). [CrossRef] [PubMed]
  21. X. Zhang, Y. Ju and Y. Wang, "Theoretical and experimental investigation of actively Q-switched Tm,Ho:YLF lasers," Opt. Express 14, 7745-7750 (2006). [CrossRef] [PubMed]
  22. P. Černý and D. Burns, "Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b- cut crystal orientations," IEEE J. Sel. Top. Quantum Electron. 11, 674-681 (2005). [CrossRef]
  23. V. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited