OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 3991–3997

104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser

Degang Xu, Yuye Wang, Haifeng Li, Jianquan Yao, and Yuen H. Tsang  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3991-3997 (2007)
http://dx.doi.org/10.1364/OE.15.003991


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By use of CW diode laser stacked arrays, side-pumping Q-switched composite ceramic Nd:YAG rod laser based on a type II KTP crystal intracavity frequency-doubled, a high power high stability green laser has been demonstrated. Average output power of 104 W is obtained at a repetition rate of 10.6 kHz with a diode-to-green optical conversion efficiency of 10.9%. For the average output power of about 100 W, the measured pulse width is 132 ns with power fluctuation of less than 0.2%. The experimental results show that the green laser system using this novel ceramic Nd:YAG offers better laser performance and output stability than the traditional single Nd:YAG crystal green laser system with the same operating conditions and experimental configuration.

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 29, 2006
Revised Manuscript: January 24, 2007
Manuscript Accepted: January 27, 2007
Published: April 2, 2007

Citation
Degang Xu, Yuye Wang, Haifeng Li, Jianquan Yao, and Yuen H. Tsang, "104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser," Opt. Express 15, 3991-3997 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3991


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bachmann, S. Wyler, R. Ruszat, R. Casella, T. Gasser, and T. Sulser, "80W high-power KTP laser vaporization of the prostate clinical results after 110 consecutive procedures," Eur Urol. 3, 145-145 (2004). [CrossRef]
  2. B. J. Le Garrec, G. J. Razé, P. Y. Thro, and M. Gilbert, "High-average-power diode-array-pumped frequency-doubled YAG laser," Opt. Lett. 21, 1990-1992 (1996). [CrossRef] [PubMed]
  3. E. C. Honea, C. A. Raymond, J. Beach,  et al., "Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm," Opt. Lett. 23, 1203-1205 (1998). [CrossRef]
  4. J. J. Chang, E. P. Dragon, C. A. Ebbers,  et al., "An efficient Diode-Pumped Nd:YAG Laser with 451 W of CW IR and 182 W of pulsed green output," in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 300-304.
  5. T. Kojima, S. Fujikawa, and K. Yasui, "Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG Rods," IEEE J. Quantum Electron. 35, 377 (1999). [CrossRef]
  6. J. Yi, H. J. Moon, and J. Lee, "Diode-pumped 100-W green Nd:YAG rod laser," Appl. Opt. 43, 3732-3737 (2004). [CrossRef] [PubMed]
  7. A. C. Gong, Y. Bo, Y. Bi,  et al., "High beam quality green generation with output 140W based on a thermally-near-unstable fla-flat resonator," Chin. Phys. Lett. 22, 125-127 (2005). [CrossRef]
  8. D. G. Xu, J. Q. Yao, B. G. Zhang,  et al., "110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control," Opt. Commun. 245, 341-347 (2005). [CrossRef]
  9. R. R. Monchamp, "The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12," J. Cryst. Growth. 11, 310-312 (1971). [CrossRef]
  10. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004). [CrossRef]
  11. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda,  et al., "Development of Nd:YAG ceramic lasers," in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 507-517.
  12. A. Ikesue, T. Taira, and K. Yoshida, "SHG laser using YAG ceramics for light source of photofabrication," J. Photopolym. Sci. Technol. 13, 687-690 (2000). [CrossRef]
  13. H. F. Li, D. G. Xu, Y. Yang,  et al., "Experimental 511W composite Nd:YAG ceramic laser," Chin. Phys. Lett. 22, 2565-2567 (2005). [CrossRef]
  14. D. G. Xu, J. Q. Yao, R. Zhou,  et al., "104W all solid state Nd:YAG intracavity frequency doubled laser," Acta Opt. Sin. 24, 925-928 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited