OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 4083–4097

Three dimensional optical angiography

Ruikang K. Wang, Steven L. Jacques, Zhenhe Ma, Sawan Hurst, Stephen R. Hanson, and Andras Gruber  »View Author Affiliations

Optics Express, Vol. 15, Issue 7, pp. 4083-4097 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With existing optical imaging techniques three-dimensional (3-D) mapping of microvascular perfusion within tissue beds is severely limited by the efficient scattering and absorption of light by tissue. To overcome these limitations we have developed a method of optical angiography (OAG) that can generate 3-D angiograms within millimeter tissue depths by analyzing the endogenous optical scattering signal from an illuminated sample. The technique effectively separates the moving and static scattering elements within tissue to achieve high resolution images of blood flow, mapped into the 3-D optically sectioned tissue beds, at speeds that allow for perfusion assessment in vivo. Its development has its origin in Fourier domain optical coherence tomography. We used OAG to visualize the cerebral microcirculation, of adult living mice through the intact cranium, measurements which would be difficult, if not impossible, with other optical imaging techniques.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 11, 2007
Revised Manuscript: March 14, 2007
Manuscript Accepted: March 19, 2007
Published: April 2, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Ruikang K. Wang, Steven L. Jacques, Zhenhe Ma, Sawan Hurst, Stephen R. Hanson, and Andras Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-4097 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys.  66, 239-303 (2003). [CrossRef]
  2. P.H. Tomlins and R.K. Wang, "Theory, development and applications of optical coherence tomography," J Phys. D: Appl. Phys. 38, 2519-2535 (2005) [CrossRef]
  3. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography,’Science,  254, 1178-1181 (1991) [CrossRef] [PubMed]
  4. G. J. Tearney,  et al, "In vivo endoscopic optical biopsy with optical coherence tomography," Science  276, 2037-2039 (1997) [CrossRef] [PubMed]
  5. W. Drexler,  et al, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001) [CrossRef] [PubMed]
  6. S.A. Boppart,  et al, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-865 (1998) [CrossRef] [PubMed]
  7. G. Hausler, M. W. Lindner, "Coherence radar and Spectral radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) [CrossRef]
  8. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003) [CrossRef] [PubMed]
  9. Z. P. ChenT. E. Milner, S. Srinivas,  et al, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  10. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express,  11, 3116-3121 (2003). [CrossRef] [PubMed]
  11. B. R. White, M. C. Pierce, N. Nassif,  et al., "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  12. S. Jiao, L. H. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt Lett. 27, 101-103 (2002). [CrossRef]
  13. E. Gotzinger, M. Pircher, and C.K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography," Opt. Express 13, 217-229 (2005). [CrossRef]
  14. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method", Opt. Express 14, 6502-6515 (2006). [CrossRef] [PubMed]
  15. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  16. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000) [CrossRef]
  17. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett.,  89, 144103 (2006) [CrossRef]
  18. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006). [CrossRef] [PubMed]
  19. S. Makita, Y. Hong, M. Y. T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821 (2006). [CrossRef] [PubMed]
  20. R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). [CrossRef] [PubMed]
  21. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005) [CrossRef] [PubMed]
  22. E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). [CrossRef] [PubMed]
  23. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14,1487-1496 (2006). [CrossRef] [PubMed]
  24. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006) [CrossRef] [PubMed]
  25. E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE,  51, 868-869 (1963). [CrossRef]
  26. S. L. Hahn, "Hilbert Transformation" in The Transforms and Applications Handbook, A. D. Poularikas, ed., (CRC, 1996), pp 463.
  27. R. K. Wang, "In vivo full range complex Fourier Domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007. [CrossRef]
  28. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral Interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  29. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE, USA (2000)
  30. R. K. Wang, "Modelling Optical Properties of Soft Tissue by Fractal Distribution of Scatters," J. Mod. Opt.,  47, 103-120 (2000).
  31. T. Misgeld and M. Kerschensteiner, "In vivo imaging of the diseased nervous system," Nat. Rev. Neurosci. 7, 449-463 (2006). [CrossRef] [PubMed]
  32. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  33. Y. H. Zhao, Z. P. Chen, Z. H. Ding,  et al, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2000)
  34. H. W. Ren, Z. H. Ding, Y. H. Zhao,  et al., "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002). [CrossRef]
  35. R. A. Leitgeb, L. Schmetterer, and C. K. Hitzenberger,  et al., "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-3 (2004). [CrossRef] [PubMed]
  36. J. Zhang and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7459 (2005). [CrossRef] [PubMed]
  37. R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006). [CrossRef] [PubMed]
  38. B. J. Vakoc, S. H. Yun, J. F. de Boer, G.J. Tearney, B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express,  13, 5483-5493 (2005). [CrossRef] [PubMed]
  39. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000). [CrossRef]
  40. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography." Arch. Ophthalmol. 121, 235-239 (2003). [PubMed]
  41. J. R. Lindner, "Microbubbles in medical imaging: current applications and future directions," Nat. Rev. Drug Discovery 3, 527-532 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2541 KB)     
» Media 2: AVI (3617 KB)     
» Media 3: AVI (3119 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited