OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 4224–4237

Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings

Evgeny Popov, Nicolas Bonod, and Stefan Enoch  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 4224-4237 (2007)
http://dx.doi.org/10.1364/OE.15.004224


View Full Text Article

Enhanced HTML    Acrobat PDF (587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of a plasmon surface wave in deep metallic lamellar gratings is shown to be characterized by absorption losses smaller than on a flat metallic-dielectric interface. This feature is due to the formation of a resonance of the electric field inside the groove. Similar to the plasmon surface wave in shallow gratings, this kind of plasmon can lead to total absorption of incident light and to a significant enhancement of the local field density in the vicinity of the grating surface, contrary to the other type of grating anomaly linked with a cavity resonance.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 22, 2006
Revised Manuscript: January 17, 2007
Manuscript Accepted: January 17, 2007
Published: April 2, 2007

Citation
Evgeny K. Popov, Nicoals Bonod, and Sefan Enoch, "Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings," Opt. Express 15, 4224-4237 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).
  2. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  3. A. Hessel and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965). [CrossRef]
  4. D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980). [CrossRef]
  5. T. Ebbesen, H. Lezec, H. Ghaemis, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 - 669 (1998). [CrossRef]
  6. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003). [CrossRef] [PubMed]
  7. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plamsons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  8. P. Hibbins, M. J. Lockyear, I. R. Hooper, J. R. Sambles,"Waveguide arrays as metamaterials: transmission below cut-off," Phys. Rev. Lett. 96, 073904 (2006). [CrossRef] [PubMed]
  9. E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990). [CrossRef]
  10. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998). [CrossRef]
  11. F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999). [CrossRef]
  12. W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999). [CrossRef]
  13. R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002). [CrossRef]
  14. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole array," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  15. M. Nevière and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design, (Marcel Dekker, New York, 2003).
  16. Lord RayleighO. M. , "Note on the remarkable case of diffraction spectra described by Prof. Wood," Phil. Mag. 14, 60-65 (1907).
  17. See, for example, the review chapter by D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed., (John Wiley, 1982), Chap. 17.
  18. R. Reinisch, E. Popov, and M. Nevière, "Second harmonic generation induced optical bistability in prism or grating couplers," Opt. Lett. 20, 854-856 (1995). [CrossRef] [PubMed]
  19. B. S. Thornton, "Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design," J. Opt. Soc. Am. 65, 267-270 (1975). [CrossRef]
  20. R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Theory of crossed gratings," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, Berlin, 1980)
  21. E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994). [CrossRef] [PubMed]
  22. E. Popov, L. Tsonev, and D. Maystre, "Gratings-general properties of the Littrow mounting and energy flow distribution," J. Mod. Opt. 37, 367-377 (1990). [CrossRef]
  23. See, for example, M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), Chap. 5.
  24. A.-L. Baudrion, J.-C. Weber, A. Dereux, G. Lecamp, P. Lalanne, S. I. Bozhevolnyi, "Influence of the filling factor on the spectral properties of plasmonic crystals," Phys. Rev. B 74, 125406 (2006). [CrossRef]
  25. E. Popov, M. Nevière, S. Enoch, R. Reinish, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  26. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the nonlinear optical susceptibility of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006). [CrossRef] [PubMed]
  27. J. D. Jackson, Classical Electrodynamics (Wiley, 1998), sec. 8.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited