OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 4268–4280

Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide

Tadashi Murao, Kunimasa Saitoh, Nikolaos J. Florous, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 15, Issue 7, pp. 4268-4280 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we study the novel propagation properties of an improved triangular-type air-core photonic bandgap fiber (PBGF) structured with an anti-resonant silica core surround, through a full-vector modal solver based on the finite-element method (FEM). At first, to realize a single-mode operation over a wide wavelength range, the fiber whose core is constructed by removing 1 air-hole and expanded is proposed and structurally-optimized. In particular, the structural parameters for the fiber that prevent the narrow-band transmission due to the existence of the surface modes and enhance the confinement of the power in the air-core are presented. For the realization of an ultimate low loss transmission, a 7-unit-cell PBGF is analyzed and we show that the 7-unit-cell PBGF can achieve not only lower confinement loss than that of regular-type 7-unit-cell PBGF, but also lower power fraction in the silica-ring when compared with the regular 19-unit-cell PBGF with an anti-resonant core surround, exhibiting an effectively single-mode operation.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

Original Manuscript: December 21, 2006
Revised Manuscript: March 9, 2007
Manuscript Accepted: March 19, 2007
Published: April 2, 2007

Tadashi Murao, Kunimasa Saitoh, Nikolaos J. Florous, and Masanori Koshiba, "Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide," Opt. Express 15, 4268-4280 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Roberts, T. A. Birks, P. St. J. Russell, T. J. Shepherd, and D. M. Atkin, "Two-dimensional photonic band-gap structures as quasi-metals," Opt. Lett. 21, 507-509 (1996). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. J. Broeng, S. E. Barkou, T. Sφndergaard, and A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98 (2000). [CrossRef]
  4. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003). [CrossRef] [PubMed]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  6. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  7. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004). [CrossRef] [PubMed]
  8. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004). [CrossRef]
  9. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004). [CrossRef] [PubMed]
  10. M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber," IEEE Photon. Technol. Lett. 17, 64-66 (2005). [CrossRef]
  11. M. Yan, P. Shum, and J. Hu, "Design of air-guiding honeycomb photonic bandgap fiber," Opt. Lett. 30, 465-467 (2005). [CrossRef] [PubMed]
  12. T. Haas, S. Belau, and T. Doll, "Realistic monomode air-core honeycomb photonic bandgap fiber with pockets," J. Lightwave Technol. 23, 2702-2706 (2005). [CrossRef]
  13. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  14. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005). [CrossRef] [PubMed]
  15. N. J. Florous, K. Saitoh, T. Murao, and M. Koshiba, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006). [CrossRef] [PubMed]
  16. L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006). [CrossRef]
  17. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation," Opt. Express 14, 2404-2412 (2006). [CrossRef] [PubMed]
  18. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Design of low-loss and highly birefringent hollow-core photonic crystal fiber," Opt. Express 14, 7329-7341 (2006). [CrossRef] [PubMed]
  19. T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006). [CrossRef]
  20. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006). [CrossRef] [PubMed]
  21. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  22. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006). [CrossRef] [PubMed]
  23. M. Yan and P. Shum, "Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design," Opt. Lett. 30, 1920-1922 (2005). [CrossRef] [PubMed]
  24. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, "Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers," J. Lightwave Technol. 23, 4169-4177 (2005). [CrossRef]
  25. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  26. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited