OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 7 — Apr. 2, 2007
  • pp: 4310–4320

Waveguiding in nanoscale metallic apertures

Stéphane Collin, Fabrice Pardo, and Jean-Luc Pelouard  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 4310-4320 (2007)
http://dx.doi.org/10.1364/OE.15.004310


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the optical properties of subwavelength metallic waveguides made of nanoscale apertures in a metal. We develop analytical expressions for the fundamental optical modes in apertures. The results are in excellent agreement with finite element calculations. This model provides a physical understanding of the role of non-perfect metallic walls, and of the shape and size of the apertures. They reveal the effect of the skin depth and of the surface plasmon polariton coupling on the waveguide modes. The nanoscopic origin of the increase of the cut-off wavelength due to the electromagnetic penetration depth in the metal is described. Simple expressions and universal curves for the effective index and the cut-off wavelength of the fundamental guided mode of any rectangular metallic waveguide are presented. The results provide an efficient tool for the design of nanoscale waveguides with real metal.

© 2007 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: December 22, 2006
Revised Manuscript: February 2, 2007
Manuscript Accepted: February 6, 2007
Published: April 2, 2007

Citation
Stéphane Collin, Fabrice Pardo, and Jean-Luc Pelouard, "Waveguiding in nanoscale metallic apertures," Opt. Express 15, 4310-4320 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 667, 391 (1998).
  2. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 824, 424 (2003).
  3. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, "Enhancement of single-molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002). [CrossRef] [PubMed]
  5. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen "Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture," Adv. Mater. 11, 860 (1999). [CrossRef]
  6. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972 (2001). [CrossRef]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61 (2004). [CrossRef]
  8. F. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475 (2002).
  9. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  10. E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Light transmission through a subwavelength hole," Opt. Commun. 255, 338 (2005). [CrossRef]
  11. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74,153411 (2006). [CrossRef]
  12. N. M. Arslanov, "The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture," J. Opt. Soc. Am. A 8, 338 (2006). [CrossRef]
  13. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682 (2003). [CrossRef] [PubMed]
  14. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary Optical Transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  15. P. Lalanne, J.-C. Rodier, and J.-P. Hugonin, "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure and Appl. Opt. 7, 422 (2005). [CrossRef]
  16. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004). [CrossRef] [PubMed]
  17. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials,"J. Opt. A: Pure and Appl. Opt. 7, S97 (2005). [CrossRef]
  18. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  19. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316 (2004). [CrossRef]
  20. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005). [CrossRef]
  21. A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A: Pure and Appl. Opt. 7, S90 (2005). [CrossRef]
  22. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, "Strong modification of the Nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97, 146102 (2006). [CrossRef] [PubMed]
  23. J. A. Porto and F. J. Garcia-Vidal and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  24. L. Martín-Moreno, and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619 (2004). [CrossRef]
  25. P. Lalanne, and J.-P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Mater. 2, 509 (2006).
  26. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1 (2004). [CrossRef]
  27. Commercial software (Femlab/Comsol).
  28. L. Novotny and C. Hafner "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094 (1994). [CrossRef]
  29. H. Shin, P. B. Catrysse, and S. Fan "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005). [CrossRef]
  30. K. J. Webb and J. Li "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006). [CrossRef]
  31. R. Gordon, and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933 (2005). [CrossRef] [PubMed]
  32. J. Luo and C. Jiao "Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes," Appl. Phys. Lett. 88, 061115 (2006). [CrossRef]
  33. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]
  34. E. D. PalikHandbook of Optical Constants of Solids (New York, Academic, 1985).
  35. K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006). [CrossRef]
  36. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  37. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508 (2006). [CrossRef] [PubMed]
  38. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467 (2006). [CrossRef] [PubMed]
  39. J. D. Jackson, Classical Electrodynamics, Third Ed., sec. 8.6, (John Wiley & Sons, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited