OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4474–4484

Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs

J.A. Conway, S. Sahni, and T. Szkopek  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4474-4484 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The continued scaling of integrated circuits will require advances in intra-chip interconnect technology to minimize delay, density of energy dissipation and cross-talk. We present the first quantitative comparison between the performance of metal wire interconnects, operated in the traditional manner by electric charge and discharge, versus the performance of metal wires operated as surface plasmon waveguides. Surface plasmon wire waveguides have the potential to reduce signal delay, but the high confinement required for low cross-talk amongst high density plasmon wire interconnects significantly increases energy dissipation per transmitted bit, above and beyond that required for electric charge/discharge interconnects at the same density.

© 2007 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(240.6680) Optics at surfaces : Surface plasmons
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2007
Revised Manuscript: March 28, 2007
Manuscript Accepted: March 28, 2007
Published: April 3, 2007

Josh A. Conway, Subal Sahni, and Thomas Szkopek, "Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs," Opt. Express 15, 4474-4484 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. "International Technology Roadmap for Semiconductors, 2005 Edition, Interconnect," http://www.itrs.net/Links/2005ITRS/Interconnect2005/Interconnect2005.pdf.
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189 (2006). [CrossRef] [PubMed]
  3. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt., "Size-dependent resistivity of metallic wires in the mesoscopic range," Phys. Rev. B 66, 075414 (2000). [CrossRef]
  4. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt., "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," J. Appl. Phys. 97, 023706 (2005). [CrossRef]
  5. G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 114 (1965).
  6. D.A.B. Miller, "Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters," Opt. Lett. 14, 146, (1989). [CrossRef] [PubMed]
  7. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express,  14,314 (2006). [CrossRef] [PubMed]
  8. S.A. Backer, I. Suez, Z. Fresco, J.M.J. Frechet, J. Conway, S. Vedantam, H. Lee, and E. Yablonovitch, "Development of New Materials for Plasmonic Imaging Lithography at 476 nm," J. Vac. B (to be published).
  9. L.G. Schulz, "The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k," J. Opt. Soc. Am. 44, 357 (1954). [CrossRef]
  10. L.G. Schulz and F. R. Tangherlini, "Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n," J. Opt. Soc. Am. 44,362 (1954). [CrossRef]
  11. V.G. Padalka and I.N. Shklyarevskii, "Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295deg K," Opt. Spectr. U.S.S.R. 11, 527 (1961).
  12. R. Philip and J. Trompette, "Simultaneous measurement of the optical constants and thickness of very thin silver films in the visible and near ultraviolet parts of the spectrum," Compt. Rend.,  241, 627 (1955).
  13. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  14. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29,1069-1071 (2004). [CrossRef] [PubMed]
  15. A. Hosseini, A. Nieuwoudt, and Y. Massoud, "Efficient Simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi," Opt. Express,  14, 7291 (2006). [CrossRef] [PubMed]
  16. T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, and K. Hane, Nano-Optics (Springer, 2002), Chap. 5.
  17. J.H. Chern, J. Huang, L. Arledge, P.C. Li, and P. Yang, "Multilevel metal capacitance models for CAD design synthesis systems," IEEE Electron. Device Lett. 13, 32 (1992). [CrossRef]
  18. "International Technology Roadmap for Semiconductors, 2005 Edition, Process Integration, Devices and Structures," http://www.itrs.net/Links/2005ITRS/PIDS2005.pdf.
  19. M.I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett.,  93, 137404 (2004). [CrossRef] [PubMed]
  20. J. Davis and J. Meindl, "Interconnect technology for gigascale integration," Kluwer (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited