OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4499–4514

Design and fabrication of photonic crystal quantum cascade lasers for optofluidics

Marko Lončar, Benjamin G. Lee, Laurent Diehl, Mikhail Belkin, Federico Capasso, Marcella Giovannini, Jérôme Faist, and Emilio Gini  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4499-4514 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present novel designs and demonstrate a fabrication platform for electrically driven lasers based on high quality-factor photonic crystal cavities realized in mid-infrared quantum cascade laser material. The structures are based on deep-etched ridges with their sides perforated with photonic crystal lattice, using focused ion beam milling. In this way, a photonic gap is opened for the emitted TM polarized light. Detailed modeling and optimization of the optical properties of the lasers are presented, and their application in optofluidics is investigated. Porous photonic crystal quantum cascade lasers have potential for on-chip, intracavity chemical and biological sensing in fluids using mid infrared spectroscopy. These lasers can also be frequency tuned over a large spectral range by introducing transparent liquid in the photonic crystal holes.

© 2007 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2007
Revised Manuscript: March 26, 2007
Manuscript Accepted: March 27, 2007
Published: April 3, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Marko Lončar, Benjamin G. Lee, Laurent Diehl, Mikhail A. Belkin, Federico Capasso, Marcella Giovannini, Jérôme Faist, and Emilio Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001) [CrossRef]
  3. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996). [CrossRef]
  4. S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005). [CrossRef]
  5. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006). [CrossRef]
  6. T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001) [CrossRef]
  7. S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001) [CrossRef]
  8. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002) [CrossRef]
  9. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002) [CrossRef]
  10. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670 (2002) [PubMed]
  11. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003) [CrossRef]
  12. Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003) [CrossRef] [PubMed]
  13. D. Englund, I. Fushman and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961 (2005) [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006) [CrossRef]
  15. T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006) [CrossRef] [PubMed]
  16. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999). [CrossRef] [PubMed]
  17. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002) [CrossRef]
  18. M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002) [CrossRef]
  19. T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004). [CrossRef]
  20. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006) [CrossRef]
  21. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004) [CrossRef] [PubMed]
  22. A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004) [CrossRef]
  23. Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006) [CrossRef] [PubMed]
  24. L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006). [CrossRef] [PubMed]
  25. M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003) [CrossRef]
  26. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004) [CrossRef] [PubMed]
  27. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006) [CrossRef] [PubMed]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999). [CrossRef]
  29. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003). [CrossRef] [PubMed]
  30. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004). [CrossRef]
  31. C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204). [CrossRef]
  32. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005) [CrossRef] [PubMed]
  33. S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006). [CrossRef]
  34. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991). [CrossRef]
  35. Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003) [CrossRef]
  36. J. Melngailis, "Focused ion-beam technology and applications," J. Vac. Sci. Tech. B 5, 469 (1987). [CrossRef]
  37. M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005). [CrossRef]
  38. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000). [CrossRef]
  39. J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005). [CrossRef]
  40. M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, J. Faist, "Novel photonic crystal quantum cascade laser platform," CLEO 2006.
  41. L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000). [CrossRef]
  42. K. E. Zinoviev, C. Dominguez, A. Vila, "Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam," Opt. Express 13, 8618 (2005). [CrossRef] [PubMed]
  43. Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005). [CrossRef]
  44. M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005). [CrossRef]
  45. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093 (2004) [CrossRef] [PubMed]
  46. J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003). [CrossRef]
  47. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005). [CrossRef]
  48. D. Erickson, T. Rockwood, T. Emery, A. Scherer and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59 (2006) [CrossRef] [PubMed]
  49. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998). [CrossRef]
  50. J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006). [CrossRef]
  51. J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited