OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 4557–4576

Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses

Guillaume Duchateau and Anthony Dyan  »View Author Affiliations


Optics Express, Vol. 15, Issue 8, pp. 4557-4576 (2007)
http://dx.doi.org/10.1364/OE.15.004557


View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By coupling statistics and heat transfer, we investigate numerically laser-induced crystal damage by multi-gigawatt nanosecond pulses. Our model is based on the heating of nanometric absorbing defects that may cooperate when sufficiently aggregated. In that configuration, they induce locally a strong increase of temperature that may lead to a subsequent damage. This approach allows to predict cluster size distribution and damage probabilities as a function of the laser fluence. By studying the influence of the pulse duration onto the laser-induced damage threshold, we have established scaling laws that link the critical laser fluence to its pulse duration τ. In particular, this approach provides an explanation to the deviation from the standard τ1/2 scaling law that has been recently observed in laser-induced damage experiments with KH2PO4 (KDP) crystals [J.J. Adams et al, Proc. of SPIE 5991, 5991R-1 (2005)]. In the present paper, despite the 3D problem is tackled, we focus our attention on a 1D modeling of thermal diffusion that is shown to provide more reliable predictions than the 3D one. These results indicate that absorbers involved in KDP damage may be associated with a collection of planar defects. First general comparisons with some experimental facts have been performed.

© 2007 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 17, 2007
Revised Manuscript: March 15, 2007
Manuscript Accepted: March 21, 2007
Published: April 3, 2007

Citation
Guillaume Duchateau and Anthony Dyan, "Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses," Opt. Express 15, 4557-4576 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-8-4557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. De Yoreo, A. K. Burnham and P. K. Whitman, "Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser," Int. Mater. Rev. 47, 113-152 (2002) [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit and S. G. Demos, "Localized dynamics during laserinduced damage in optical materials," Phys. Rev. Lett. 92, 087401 (2004) [CrossRef] [PubMed]
  3. J. J. Adams et al, "Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4," in Laser-induced damage in optical materials, Proc. SPIE 5991,59911R-1 (2005)
  4. C. W. Carr, M. D. Feit, M. A. Johnson and A. M. Rubenchik, "Complex morphology of laser-induced bulk damage in KH2.xD2xPO4 crystals," Appl. Phys. Lett. 89, 131901 (2006) [CrossRef]
  5. C. S. Liu, C. J. Hou, N. Kiousis, S. G. Demos and H. B. Radousky, "Electronic structure calculations of an oxygen vacancy in KH2PO4," Phys. Rev. B 72, 134110 (2005) [CrossRef]
  6. C. S. Liu, N. Kioussis, S. G. Demos and H. B. Radousky, "Electron-or hole-assisted reactions of H defects in hydrogen-bonded KDP," Phys. Rev. Lett. 91, 015505 (2003) [CrossRef] [PubMed]
  7. S. G. Demos, M. Staggs, J. J. De Yoreo and H. B. Radousky, "Imaging of laser-induced reactions of individual defect nanoclusters," Opt. Lett. 26, 1975-1977 (2001) [CrossRef]
  8. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky and J. J. De Yoreo, "Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation," J. Appl. Phys 85, 3988-3992 (1999) [CrossRef]
  9. J. Dijon, T. Poiroux and C. Desrumaux, "Nano absorbing centers: a key point in the laser damage of thin film," in Laser-induced damage in optical materials, Proc. SPIE 2966315 (1997)
  10. C. W. Carr, H. B. Radousky and S. G. Demos, "Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms," Phys. Rev. Lett. 91, 127402 (2003) [CrossRef] [PubMed]
  11. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. G’enin, S. Schwartz and L. M. Sheehan, "Extrapolation of damage test data to predict performance of large area NIF optics at 355nm," in Laser-induced damage in optical materials, Proc. SPIE 3578, 226-234 (1998)
  12. R.W. Hopper and D. R. Uhlmann, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970) [CrossRef]
  13. M. D. Feit and A. M. Rubenchik, "Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning," in Laser-induced damage in optical materials, Proc. SPIE 5273, 74-82, (2004)
  14. A. Dyan, F. Enguehard, S. Lallich, H. Piombini, H. Mathis and G. Duchateau, "Laser-induced damage in KH2PO4 and D2xKH2(1.x)PO4: influence of the laser probed volume and optimization of the conditioning through a revisited thermal approach," submitted toOptics Communications
  15. J. O. Porteus and S. C. Seitel, "Absolute onset of optical surface damage using distributed defect ensembles," Appl. Opt. 23, 3796 (1984) [CrossRef] [PubMed]
  16. R. M. O’Connell, "Onset threshold analysis of defect-driven surface and bulk laser damage," Appl. Opt. 314143-4153 (1992) [CrossRef] [PubMed]
  17. R. H. Picard, D. Milam and R. A. Bradbury, "Statistical analysis of defect-caused laser damage in thin films" Appl. Opt. 16, 1563-1571 (1977) [CrossRef] [PubMed]
  18. L. Gallais, J. Y. Natoli and C. Amra, "Statistical study of single and multiple pulse laser-induced damage in glasses," Opt. Express 10, 1465-1474 (2002) [PubMed]
  19. J. Y. Natoli, L. Gallais, H. Akhouayri and C. Amra, "Laser-induced damage of materials in bulk, thin film, and liquid forms," Appl. Opt. 41, 3156-3166 (2002) [CrossRef] [PubMed]
  20. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford Science Publications, Second Edition (1959)
  21. K. E. Montgomery and F. P. Milanovich, "High-laser-damage-threshold potassium dihydrogen phosphate crystals," J. Appl. Phys. 683979-82 (1990) [CrossRef]
  22. P. K. Bandyopadhyay and L. D. Merkle, "Laser-induced damage in quartz: a study of the influence of impurities and defects," J. Appl. Phys. 631392-1398 (1988) [CrossRef]
  23. F. Bonneauel al, "Study of UV laser interaction with gold nanoparticles embedded in silica," Appl. Phy. B 75, 803-815 (2002) [CrossRef]
  24. N. W. Ashcroft and N. D. Mermin, Solid state physics, Brooks Cole, first edition, 1976
  25. C. Kittel, Introduction to solid state physics, Wiley, seventh edition, 1995
  26. F. Y. Génin, A. Salleo, T. V. Pistor and L. L. Chase, "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 182607-16 (2001) [CrossRef]
  27. I. Drevensek, M. Zgonik, M. Copic, R. Blinc, A. Fuith, W. Schranz, M. Fally, and H. Warhanek, Phys. Rev. B 49, 3082-3088 (1994) [CrossRef]
  28. Z. L. Xia, Z. X. Fan and J. D. Shao, "A new theory for evaluating the number density of inclusions in films," Appl. Surf. Sci. 252 (23), 8235-8238 (2006) [CrossRef]
  29. S. Papernov and A.W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002) [CrossRef]
  30. M. Runkel, J. DeYoreo, W. Sell and D. Milam, "Laser conditioning study of KDP on the optical sciences laser using large area beams," in Laser-induced damage in optical materials, Proc. SPIE 3244, 51 (1998)
  31. E. S. Bliss, "Pulse duration dependence of laser damage mechanism" Opto-electronics 3, 99 (1971) [CrossRef]
  32. R. M. Wood, Laser-induced damage of optical materials, Institute Of Physics publishing series in optics ans optoelectronics, Bristol and Philadelphia (2003)
  33. B. C. Stuart,M. D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore andM. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996) [CrossRef]
  34. A. Dyan and G. Duchateau, CEA, Centre d’Etudes du Ripault, BP 16, 37260 Monts, France, are preparing a manuscript to be called "Laser-induced damage by a nanosecond pulse: a method coupling heat transfer, Mie’s theory and microscopic processes"
  35. H. Goldenberg and C.J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952) [CrossRef]
  36. M. Sparks, "Theory of laser heating of solids: metals," J. Appl. Phys. 47, 837-849 (1976) [CrossRef]
  37. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Alan Jeffrey Editor, Fifth Edition (1994)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited