OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 5030–5042

Dispersion matching of sample and reference arms in optical frequency domain reflectometry-optical coherence tomography using a dispersion-shifted fiber

Kota Asaka and Kohji Ohbayashi  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 5030-5042 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate dispersion matching of sample and reference arms in an optical frequency domain reflectometry-optical coherence tomography (OFDR-OCT) system with a discretely swept light source centered at 1550 nm, using a dispersion-shifted fiber (DSF) in the reference arm. By adjusting the optical length of the DSF so that it is equal to that of the free space in the sample arm, we achieve a high resolution of 27.2 μm (in air), which is very close to the theoretically expected value of 26.8 μm when we measure the reflective mirror. This improves the degraded resolution (36.1 μm) in a system using a conventional single-mode fiber when the free-space length in the sample arm was 909 mm. We also demonstrate a clear interface between air and the enamel layer of an extracted human tooth with the discretely swept (DS) OFDR-OCT imaging due to the improved resolution provided by this technique. In addition, we confirmed the enhanced sharpness of the cellular structure in a dispersion matched OCT image of an onion sample. These results show the potential of our DS-OFDR-OCT system for a compact low-cost apparatus with a high axial resolution.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

Original Manuscript: January 18, 2007
Revised Manuscript: April 9, 2007
Manuscript Accepted: April 9, 2007
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Kota Asaka and Kohji Ohbayashi, "Dispersion matching of sample and reference arms in optical frequency domain reflectometry-optical coherence tomography using a dispersion-shifted fiber," Opt. Express 15, 5030-5042 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  3. G. Ha¨usler and M. W. Lindner, ""Coherence radar" and "Specral radar" - New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  6. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005). [CrossRef] [PubMed]
  7. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Tissue imaging by OFDR-OCT using an SSG-DBR laser," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimoto, eds., vol. 5690 of Proc. SPIE, pp. 101-113 (2005).
  8. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996). [CrossRef]
  9. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001). [CrossRef]
  10. M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  11. D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006). [CrossRef]
  12. W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  13. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999). [CrossRef]
  14. T. Xie, Z. Wang, and Y. Pan, "Dispersion compensation in high-speed optical coherence tomography by acoustooptic modulation," Appl. Opt. 44, 4272-4280 (2005). [CrossRef] [PubMed]
  15. M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994). [CrossRef]
  16. B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986). [CrossRef]
  17. S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber," Opt. Lett. 31, 2830-2832 (2006). [CrossRef] [PubMed]
  18. H. Murata, Handbook of optical fibers and cables (Marcel Dekker, Inc., New York, 1988).
  19. F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993). [CrossRef]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, California, 2000).
  21. N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Inc., Norwood, 1995).
  22. K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, "Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
  23. D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, "A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
  24. A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999). [CrossRef]
  25. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  26. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited