OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 5100–5113

Design scaling rules for 2R-optical self-phase modulation-based regenerators

Lionel Provost, Christophe Finot, Periklis Petropoulos, Kazunori Mukasa, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 5100-5113 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present simple scaling rules to optimize the design of 2R optical regenerators relying on Self-Phase Modulation in the normal dispersion regime and associated offset spectral filtering. A global design map is derived which relates both the physical parameters of the regenerator and the properties of the incoming signal to the regeneration performance. The operational conditions for optimum noise rejection are identified using this map and a detailed analysis of the system behavior under these conditions presented. Finally, we demonstrate application of the general design map to the design of a regenerator for a specific 160 Gb/s system.

© 2007 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 19, 2006
Revised Manuscript: March 14, 2007
Manuscript Accepted: March 20, 2007
Published: April 12, 2007

Lionel A. Provost, Christophe Finot, Periklis Petropoulos, Kazunori Mukasa, and David J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Essiambre, B. Mikkelsen, and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35, 1576-1578 (1999). [CrossRef]
  2. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC'98) (1998), p. 475.
  3. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, "40 Gb/s pseudo linear transmission over one million kilometers," in Proc. Optical Fiber Communications (OFC'02) (Anaheim CA, 2002), p. 42.
  4. M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, "Optical 40-Gb/s 3R Regenerator With a Combination of the SPM and XAM Effects for All-Optical Networks," J. Lightwave Technol. 24, 1142-1148 (2006). [CrossRef]
  5. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004). [CrossRef]
  6. Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," IEEE Photon.Technol. Lett. 15, 350 (2003). [CrossRef]
  7. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon.Technol. Lett. 16, 200-202 (2004). [CrossRef]
  8. M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, "2R Optical Regeneration: An All-Optical Solution for BER Improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006). [CrossRef]
  9. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear fiber," Opt. Lett. 26, 1233-1235 (2001). [CrossRef]
  10. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, "Output performance investigation of self-phase-modulation-based 2R regenerator using Bismuth Oxide Nonlinear Fiber," IEEE Photon.Technol. Lett. 18, 1296-1298 (2006). [CrossRef]
  11. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, "2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber," Opt. Express 14, 5038-5044 (2006). [CrossRef] [PubMed]
  12. X. Liu, C. Xu, and W. H. Knox, "Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers," in Proc. Conference on Lasers and Electro-Optics (CLEO'02)(2002), pp. 612-613.
  13. A. G. Striegler and B. Schmauss, "Analysis and Optimization of SPM-Based 2R Signal Regeneration at 40 Gb/s," J. Lightwave Technol. 24, 2835-2843 (2006). [CrossRef]
  14. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472 (2004). [CrossRef]
  15. P. Johannisson and M. Karlsson, "Characterization of a self-phase-Modulation-based all-optical regeneration system," IEEE Photon.Technol. Lett. 17, 2667 (2005). [CrossRef]
  16. L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, "Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators," in Proc. European Conference on Optical Communications (ECOC'06) (Cannes, 2006), p. We 4.3.2.
  17. M. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24, 318-320 (1999). [CrossRef]
  18. R. Hainberger, T. Hoshida, S. Watanabe, and H. Onaka, "BER estimation in optical fiber transmission systems employing all-optical 2R regenerators," J. Lightwave Technol. 22, 746 (2004). [CrossRef]
  19. F. Ohman and J. Mork, "Modeling of bit error rate in cascaded 2R regenerators," J. Lightwave Technol. 24, 1057 (2006). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001). [PubMed]
  21. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 1358 (1992). [CrossRef]
  22. S. Taccheo and L. Boivin, "Investigation and design rules of supercontinuum sources for WDM applications," in Optical Fiber Communication Conference (OFC) 2000(2000), Vol. 3, pp. 2-4.
  23. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, "Optical wave breaking of pulses in nonlinear optical fibers," Opt. Lett. 15, 457 (1985). [CrossRef]
  24. I. C. M. Littler, M. Rochette, and B. J. Eggleton, "Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators," Opt. Commun. 265, 95-99 (2006). [CrossRef]
  25. N. Yoshikane, I. Morita, and N. Edagawa, "Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver," IEEE Photon.Technol. Lett. 15, 111-113 (2003). [CrossRef]
  26. T. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006). [CrossRef] [PubMed]
  27. J. E. Rothenberg, "Colliding visible picosecond pulses in optical fibers," Opt. Lett. 15, 443-445 (1990). [CrossRef] [PubMed]
  28. M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, "A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration," IEEE Photon. Technol. Lett. 17, 1680-1682 (2005). [CrossRef]
  29. S. Pitois, J. Fatome, and G. Millot, "Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal," Opt. Lett. 27, 1729-1731 (2002). [CrossRef]
  30. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, "Generalisation and experimental validation of design rules for self-phase modulation-based 2R-regenerators," in Proc. Optical Fiber Communications (OFC'07)(Anaheim CA, 2007), p. OThB6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited