OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 5147–5159

Iteratively weighted centroiding for Shack-Hartmann wave-front sensors

K. L. Baker and M. M. Moallem  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 5147-5159 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several techniques have been used with Shack-Hartmann wave-front sensors to determine the local wave-front gradient across each lenslet. In this article we introduce an iterative weighted technique which is specifically targeted for open-loop applications such as aberrometers and metrology. In this article the iterative centroiding technique is compared to existing techniques such as center-of-mass with thresholding, weighted center-of-gravity, matched filter and cross-correlation. Under conditions of low signal-to-noise ratio, the iterative weighted centroiding algorithm is demonstrated to produce a lower variance in the reconstructed phase than existing techniques. The iteratively weighted algorithm was also compared in closed-loop and demonstrated to have the lowest error variance along with the weighted center-of-gravity, however, the iteratively weighted algorithm removes the bulk of the aberration in roughly half the iterations than the weighted center-of-gravity algorithm. This iterative weighted algorithm is also well suited to applications such as guiding on telescopes.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Adaptive Optics

Original Manuscript: December 4, 2006
Revised Manuscript: February 3, 2007
Manuscript Accepted: February 28, 2007
Published: April 12, 2007

K. L. Baker and M. M. Moallem, "Iteratively weighted centroiding for Shack- Hartmann wave-front sensors," Opt. Express 15, 5147-5159 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes. (Oxford University Press, Oxford, 1998).
  2. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, "Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications," Appl. Opt. 39, 4540 (2000). [CrossRef]
  3. B. Schafer and K. Mann, "Investigation of the propagation characteristics of excimer lasers using a Hartmann-Shack sensor," Rev. Sci. Instrum. 71, 2663 (2000). [CrossRef]
  4. K. L. Baker, J. Brase, M. Kartz, S. S. Olivier, B. Sawvel, and J. Tucker, "The use of a Shack-Hartmann wave front sensor for electron density characterization of high density plasmas," Rev. Sci. Instrum. 73, 3784 (2002). [CrossRef]
  5. N. Qi, R. R. Prasad, K. Campbell, P. Coleman, M. Krishnan, B. V. Weber, S. J. Stephanakis, and D. Mosher, "Laser wave-front analyzer for imploding plasma density and current profile measurements," Rev. Sci. Instrum. 75, 3442 (2004). [CrossRef]
  6. J. Arines and J. Ares, "Minimum variance centroid thresholding," Opt. Lett. 27, 497 (2002). [CrossRef]
  7. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Opt. Lett. 29, 2743 (2004). [CrossRef] [PubMed]
  8. T. Fusco, M. Nicolle, G. Rousset, V. Michau, J.-L. Beuzit, and D. Mouillet, "Optimisation of a Shack-Hartmann-based wave-front sensor for XAO system," SPIE 5490, 1155 (2004). [CrossRef]
  9. T. R. Rimmele, "Solar Adaptive Optics," SPIE 4007, 218 (2000). [CrossRef]
  10. L. A. Poyneer, D. W. Palmer, K. N. LaFortune, and B. Bauman, "Experimental results for correlation-based wave-front sensing," SPIE 5894, 58940N (2005). [CrossRef]
  11. T. Rhoadarmer, "Laboratory Demonstration of a Correlation-Based AO System for Wave Front Sensing of Extended Objects," AMOS Technical Conference, Maui, HI, 2006.
  12. V. N. Dvornychenko, "Bounds on deterministic correlation functions with applications to registration," IEEE Trans. Pattern Anal. Mach. Intell. 5, 206 (1983). [CrossRef] [PubMed]
  13. Q. Tian and M. N. Huhns, "Algorithms for subpixel registration," Comput. Vis. Graph. Image Process. 35, 220 (1986). [CrossRef]
  14. Y. Carmon and E. N. Ribak, "Phase retrieval by demodulation of a Hartmann-Shack sensor," Opt. Commun. 215, 285 (2003). [CrossRef]
  15. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245 (2005). [CrossRef] [PubMed]
  16. M. Kujawinska, in Interferogram Analysis, D. W. Robinson and G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993).
  17. Y. Carmon and E. N. Ribak, "Fast Fourier demodulation," Appl. Phys. Lett. 84, 4656 (2004). [CrossRef]
  18. P. M. Prieto, F. Vargas-Martin, S. Goelz and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388 (2000). [CrossRef]
  19. N. Kaiser, G. Squires, and T. Broadhurst, "A method for weak lensing observations," Astrophys. J. 449, 460 (1995). [CrossRef]
  20. W. de Vries, S. S. Olivier, S. J. Asztalos, L. Rosenberg, and K. Baker, "Image Ellipticity from Atmospheric Aberrations," Publ. Astron. Soc. Pac. (to be submitted in 2007).
  21. S. S. Olivier, M. Jones, D. C. Chen, R. J. Zawadzki, S. S. Choi, S. P. Laut, and J. S. Werner, "Biomedical Optics: OCT sees the human retina sharply with adaptive optics," Laser Focus World 42, 89 (2006).
  22. A. Talmi and E. N. Ribak, "Direct demodulation of Hartmann-Shack patterns," J. Opt. Soc. Am. A 21, 632 (2004). [CrossRef]
  23. J.-L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach. (Cambridge University Press, 1998). [CrossRef]
  24. K. L. Baker, "Least-squares wave-front reconstruction of Shack-Hartmann Sensors and Shearing Interferometers using Multigrid Techniques," Rev. Sci. Instrum. 76, 053502 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited