OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 8 — Apr. 16, 2007
  • pp: 5208–5217

Axial-lateral parallel time domain OCT with an optical zoom lens and high order diffracted lights for variable imaging range

Yuuki Watanabe, Yasutoki. Takasugi, Kazuhiko Yamada, and Manabu Sato  »View Author Affiliations


Optics Express, Vol. 15, Issue 8, pp. 5208-5217 (2007)
http://dx.doi.org/10.1364/OE.15.005208


View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a method to adjust measurement range within axial–lateral parallel time-domain optical coherence tomography (ALP TD-OCT) using an optical zoom lens and high-order diffracted lights. A two-dimensional (2-D) camera can produce a depth-resolved interference image using diffracted light as the reference beam and a linear illumination beam without axial and lateral scans. The lateral range can be varied continuously from 4 to 8 mm using an optical zoom lens. Axial range could be adjusted discretely by 1st, 2nd, 3rd, and 4th orders because we used a reflective diffraction grating with 300 lines/mm in a 1.3 μm wavelength region. OCT images (320 × 256 pixels) can be displayed at 30 frames per second (fps) by calculating two interference images, captured by an InGaAs camera operated at 60 fps. With a 1.05-ms exposure, the ALP TD-OCT system has sufficient sensitivity (94.6 dB) to image the human finger in vivo.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Imaging Systems

History
Original Manuscript: February 13, 2007
Revised Manuscript: April 9, 2007
Manuscript Accepted: April 11, 2007
Published: April 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Yuuki Watanabe, Yasutoki. Takasugi, Kazuhiko Yamada, and Manabu Sato, "Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range," Opt. Express 15, 5208-5217 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-8-5208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998). [CrossRef] [PubMed]
  3. G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  6. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography, " Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  7. A. Zuluaga and R. Richards-Kortum, "Spatially resolved spectral interferometry for determination of subsurface structure," Opt. Lett. 24, 519-521 (1999). [CrossRef]
  8. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005). [CrossRef] [PubMed]
  9. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005). [CrossRef] [PubMed]
  10. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006). [CrossRef] [PubMed]
  11. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  13. M. Lebec, L. Blanchot, H. Saint-jalmes, E. Beaurepaire, and A. C. Boccara, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998). [CrossRef]
  14. A. Dubois, L. Vabre, A.C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  15. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005), [CrossRef] [PubMed]
  16. A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.  266, 738-743 (2006). [CrossRef]
  17. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, "Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography," Opt. Lett. 29, 736-738 (2004). [CrossRef] [PubMed]
  18. I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett. 23, 1797-1799 (1998). [CrossRef]
  19. Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006). [CrossRef]
  20. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited