OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5342–5359

Determination of the mode reflection coefficient in air-core photonic bandgap fibers

Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino  »View Author Affiliations


Optics Express, Vol. 15, Issue 9, pp. 5342-5359 (2007)
http://dx.doi.org/10.1364/OE.15.005342


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using an eigenmode decomposition technique, we numerically determine the backreflection coefficient of the modes of air-core photonic bandgap fibers for flat terminations. This coefficient is found to be very small for the fundamental air-guided mode, of the order of 10-5 to 10-6, in contrast with the surface and bulk modes, which exhibit significantly higher reflections, by about three to four orders of magnitude. For the Crystal Fibre HC-1550-2 fiber, we find a reflection coefficient of 1.9×10-6 for an air termination, and approximately 3.3% for a silica termination. We also find that the Fresnel approximation is ill suited for the determination of the modal reflection coefficient, and instead propose a more accurate new formula based on an averaged modal index.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(120.5700) Instrumentation, measurement, and metrology : Reflection

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: August 16, 2006
Revised Manuscript: November 6, 2006
Manuscript Accepted: November 7, 2006
Published: April 18, 2007

Citation
Vinayak Dangui, Michel J. Digonnet, and Gordon S. Kino, "Determination of the mode reflection coefficient in air-core photonic bandgap fibers," Opt. Express 15, 5342-5359 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. Sandro, "Photonic crystals as optical fibers-physics and applications," Opt. Mater. 11, 143-151 (1999). [CrossRef]
  3. R. S. Windeler, J. L. Wagener, and D. J. Giovanni, "Silica-air microstructured fibers: Properties and applications," Optical Fiber Communications Conference, San Diego, CA, USA (1999).
  4. V. Dangui, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers," Opt. Express 13, 6669-6684 (2005).H [CrossRef] [PubMed]
  5. D. M. Dagenais, K. P. Koo, and F. Bucholtz, "Fiber interferometry limitations due to parasitic optical cavities," Lasers and Electro-Optics Society Conference, San Jose, CA, USA (1993).
  6. J. Corbett, A. Dabirian, T. Butterley, N. A. Mortensen, and J. R. Allington-Smith, "The coupling performance of photonic crystal fibres in fibre stellar interferometry," Mon. Not. Roy. Astron. Soc. 368, 203-210 (2006).
  7. Crystal Fibre website, http://www.crystal-fibre.com
  8. D. Khalil, "Reflection at the end of strongly guiding dielectric waveguide," Opto-Electronics and Communications Conference, Yokohama, Japan, 1, 352-353 (2002).
  9. P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, "Towards a full vectorial and modal technique for the analysis of integrated optics structures: The Radiation Spectrum Method (RSM)," Opt. Commun. 140, 128-145 (1997). [CrossRef]
  10. D. Marcuse, Theory of dielectric optical waveguides, (Academic Press, 1974).
  11. V. Dangui, M. J. F. Digonnet, and G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Express 14, 2979-2993 (2006).H [CrossRef] [PubMed]
  12. H. . van der Vorst, "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput. 13, 631-644 (1992). [CrossRef]
  13. H. K. Kim, J. Shin, S. H. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Eectron. 40, 551-556 (2004). [CrossRef]
  14. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," in Photonic Crystal Materials and Devices, A. Adibi, A. Scherer, S. Yu Lin, eds., Proc. SPIE 5000,161-174 (2003). [CrossRef]
  15. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  16. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited