OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5460–5472

Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology

Justin D Liou, Chih-Kung Lee, and Kuang-Chong Wu  »View Author Affiliations


Optics Express, Vol. 15, Issue 9, pp. 5460-5472 (2007)
http://dx.doi.org/10.1364/OE.15.005460


View Full Text Article

Enhanced HTML    Acrobat PDF (2185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although, photorefractive materials have been discovered for many years, research using pulsed laser as the light source and photorefractive material as the recording media to record a pulsed laser hologram have been scarce despite its vast application potential. A newly proposed optical configuration which adopts a Nd:YAG pulsed laser of 532nm wavelength as the light source and uses an iron-doped lithium niobate crystal as the recording media for holographic recording of an undeformed specimen is presented. Real-time holographic interferometry was achieved by inducing repetitive impacts on the specimen through a precise piezoelectric impact hammer. With timing control better than microseconds, several interferograms created at each instance were obtained with each corresponding 9ns laser pulse. A five-step phase-shifting technology, median filter algorithm, and weighted iterative DFT phase unwrap algorithm were integrated to reconstruct the deformation information at each instance. Using a series of measured deformation data, surface wave propagation phenomenon on the specimen could be observed. Some of the potential applications for this newly developed pulsed laser holographic interferometry system are detailed.

© 2007 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(160.5320) Materials : Photorefractive materials

ToC Category:
Holography

History
Original Manuscript: February 7, 2007
Revised Manuscript: April 16, 2007
Manuscript Accepted: April 18, 2007
Published: April 20, 2007

Citation
Justin D. Liou, Chih-Kung Lee, and Kuang-Chong Wu, "Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology," Opt. Express 15, 5460-5472 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Aprahamian, "Applications of optical holography to applied mechanics," in Proceedings of the Engineering Applications of Holography Symposium, (Feb. 16-17th, 1972), pp. 19-36.
  2. A. J. Decker, "Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams," Appl. Opt. 29, 2696-2700 (1990). [CrossRef] [PubMed]
  3. L. Crawforth, C.-K. Lee, and A. C. Munce, "Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions," in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404-412.
  4. Y. Chen, "An ESPI-based Full-field Elastic Wave Propagation Metrology System," Degree Thesis, (National Taiwan University, 2000).
  5. U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, "A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique," in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239-248.
  6. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966). [CrossRef]
  7. N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I: steady state," Ferroelectrics 23, 949-960 (1979).
  8. N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals II: beam coupling and light amplification," Ferroelectrics 23, 961-964 (1979).
  9. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223-225 (1968). [CrossRef]
  10. T. K. Gaylord, T. A. Rabson, F. K. Tittel, and C. R. Quick, "Pulsed writing of solid state holograms," Appl. Opt. 12, 414-415 (1973). [CrossRef] [PubMed]
  11. P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, "Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses," Appl. Phys. Lett. 24, 130-131 (1974). [CrossRef]
  12. C.-T. Chen, D. M. Kim, and D. von der Linde, "Efficient hologram recording in LiNbO3: Fe using optical pulses," Appl. Phys. Lett. 34, 321-324 (1979). [CrossRef]
  13. D. von der Linde, A. M. Glass, and K. F. Rodgers, "Multiphoton photorefractive processes for optical storage in LiNbO3," Appl. Phys. Lett. 25, 155-157 (1974). [CrossRef]
  14. R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, "Holographic interferometry using self-developing optical crystals for heat flux evaluation," J. Electron. Packaging. 122, 225-259 (1990).
  15. X. Wang, R. Magnusson, and A. Haji-Sheikh, "Real-time interferometry with photorefractive reference holograms," Appl. Opt. 32, 1983-1986 (1993). [CrossRef]
  16. A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, and T. D. Black, "Visualization of aerodynamic flow fields using photorefractive crystals," Appl. Opt. 28, 1521-1524 (1989). [CrossRef] [PubMed]
  17. B. Pouet and S. Krishnaswamy, "Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements," Appl. Opt. 35, 787-794 (1996). [CrossRef] [PubMed]
  18. M. P. Georges and P. C. Lemaire, "Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals," Appl. Opt. 34, 7497-7506 (1995). [CrossRef] [PubMed]
  19. L. Z. Cai, Y. R. Wang, and X. M. Qu, "Wavefront shifting photorefractive holographic interferometer and its applications in optical testing," Opt. Laser Technol. 30, 1-5 (1998). [CrossRef]
  20. L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, "Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography," Opt. Lett. 20, 1652-1654 (1995). [CrossRef]
  21. L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997). [CrossRef]
  22. J. P. Huignard, and J. P. Herriau, "Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration," Appl. Opt. 16, 1807-1809 (1977). [CrossRef] [PubMed]
  23. F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998). [CrossRef]
  24. C. M. Vest, Holography Interferometry (John Wiley & Sons, 1979).
  25. D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP Publishing Ltd., 1993).
  26. P. Hariharan, B. F. Orbel, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation," Appl. Opt. 26, 2504-2507 (1987). [CrossRef] [PubMed]
  27. C. Rathjen, "Statistical properties of phase-shift algorithms," J. Opt. Soc. Am. A 12, 1997-2008 (1995). [CrossRef]
  28. C. W. Chen, H. Y. Chang, and C. K. Lee, "An innovative phase shifting system for non-destructive testing," The Chinese Journal of Mechanics, Series A 14, 31-39 (1998).
  29. A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, "Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping," Opt. Eng. 36,2466-2472 (1997). [CrossRef]
  30. H. Takajo and T. Takahashi, "Least-squares phase estimation from the phase difference," J. Opt. Soc. Am. A 5, 416-425 (1988). [CrossRef]
  31. H. Takajo and T. Takahashi, "Noniterative method for the exact solution for the normal equation in least-squares phase estimation from the phase difference," J. Opt. Soc. Am. A 5, 1818-1827 (1988). [CrossRef]
  32. D. C. Ghiglia and L. A. Romero, "Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods," J. Opt. Soc. Am. A 11, 107-117 (1994). [CrossRef]
  33. LabVIEWTM User Manual (National Instruments, Austin, TX, 2000).
  34. J. Xie, and Q. Wang, "Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal," Optical Technique 26, 268-269 (2000).
  35. Quanta-RayP RO-Series: Pulsed Nd:Yag Lasers User’s Manual (Spectra-Physics, 1999).
  36. PIV: Pulsed Nd:Yag Laser for particle Image Velocimetry User’s Manual (Spectra-Physics, 1997).
  37. Insight TM, Particle Image Velocimetry Software, Instruction Manual, (TSI Incorporated, 2000).
  38. C. K. Lee, PaulS. H. Chang, and P. Chang, "Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations," Smart Mater. Struct. 7, 312-326 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited