OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5550–5558

Generation and transfer of single photons on a photonic crystal chip

Dirk Englund, Andrei Faraon, Bingyang Zhang, Yoshihisa Yamamoto, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5550-5558 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency β ∼ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ∼67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 ± 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

© 2007 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Integrated Optics

Original Manuscript: March 5, 2007
Revised Manuscript: April 10, 2007
Manuscript Accepted: April 11, 2007
Published: April 23, 2007

Dirk Englund, Andrei Faraon, Bingyang Zhang, Yoshihisa Yamamoto, and Jelena Vučković, "Generation and transfer of single photons on a photonic crystal chip," Opt. Express 15, 5550-5558 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-9 (1997). [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 4652 (2001). [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
  4. P. Grangier, B. Sanders, and J. Vučković, "Single photons on demand," New Journal of Physics 6 (2004). [CrossRef]
  5. P. Michler, ed., Single quantum dots: Fundamentals, Applications, and New Concepts (Topics in Applied Physics, Springer-Verlag, 2003).
  6. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419(6907), 594-7 (2002). [CrossRef] [PubMed]
  7. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78(16), 3221-24 (1997). [CrossRef]
  8. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83(20), 4204-4207 (1999). [CrossRef]
  9. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, "Demonstration of a Fundamental Quantum Logic Gate," Phys. Rev. Lett. 75(25), 4714-4717 (1995). [CrossRef]
  10. J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton,W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, "Realization of quantum error correction," Nature 432, 602-5 (2005). [CrossRef]
  11. D. A. Fattal and Y. Yamamoto, "Single photons for quantum information processing," Ph.D. thesis, Stanford University (2005).
  12. W. Yao, R. B. Liu, and L. J. Sham, "Theory of Control of the Spin-Photon Interface for Quantum Networks," Phys. Rev. Lett. 95, 030,504 (2005). [CrossRef] [PubMed]
  13. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, "Observation of entanglement between a single trapped atom and a single photon," Nature 428, 153-7 (2004). [CrossRef] [PubMed]
  14. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  15. D. Englund and J. Vučković, "A direct analysis of photonic nanostructures," Opt. Express 14, 3472-83 (2006). [CrossRef] [PubMed]
  16. E. Waks and J. Vuckovic, "Coupled mode theory for photonic crystal cavity-waveguide interaction," Opt. Express 13, 5064-73 (2005). [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013,904 (2005). [CrossRef] [PubMed]
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007). [CrossRef]
  19. A. Kiraz, M. Atatüre, and I. Imamoğlu, "Quantum-dot single-photon sources: Prospects for applications quantum-information processing," Phys. Rev. A 69, 032,305-1-032,305-10 (2004). [CrossRef]
  20. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, "Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity," Appl. Phys. Lett. 87, 3107 (2005). [CrossRef]
  21. J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, "Generation and manipulation of nonclassical light using photonic crystals," Physica E Low-Dimensional Systems and Nanostructures 32, 466-470 (2006). [CrossRef]
  22. H. N. et al., "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks," Opt. Express 12, 6606-6614 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited