OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5610–5615

Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber

Hans G. Limberger, Christian Ban, René P. Salathé, Stephen A. Slattery, and David N. Nikogosyan  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5610-5615 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (6312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on photochemical two-photon Bragg grating preparation in hydrogenated fiber without any UV-induced stress in the core or cladding, leaving only the color-center model responsible for refractive index changes for UV femtosecond irradiation. Without hydrogen loading strong stress changes are observed in the core and in the cladding indicating glass compaction. The irradiation does not change the inelastic strains, in contrast to H2-loading.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials
(190.4180) Nonlinear optics : Multiphoton processes
(230.1480) Optical devices : Bragg reflectors
(350.5130) Other areas of optics : Photochemistry

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 1, 2007
Revised Manuscript: April 20, 2007
Manuscript Accepted: April 20, 2007
Published: April 24, 2007

Hans G. Limberger, Christian Ban, René P. Salathé, Stephen A. Slattery, and David N. Nikogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Express 15, 5610-5615 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. P. Hand and P. St. J. Russell, "Photoinduced refractive-index changes in germanosilicate fibers," Opt. Lett. 15,102-104 (1990). [CrossRef] [PubMed]
  2. J. P. Bernardin and N. M. Lawandy, "Dynamics of the formation of Bragg gratings in germanosilicate optical fibers," Opt. Commun. 79, 194-199 (1990). [CrossRef]
  3. C. Fiori and R. A. B. Devine, "Ultraviolet irradiation induced compaction and photobleaching in amorphous, thermal SiO2," Material Research Society Symp. Proc. 61, 187-195 (1986). [CrossRef]
  4. E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, N. H. Ky, H. G. Limberger, and R. P. Salathé, "UV irradiation induced structural transformation of germanosilicate glass fiber," Opt. Lett. 22, 1754-1756 (1997). [CrossRef]
  5. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, "Tension increase correlated to refractive index change in fibers containing UV-written Bragg gratings," Opt. Lett. 20, 1346-1348 (1995). [CrossRef] [PubMed]
  6. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, "Compaction- and photoelastic- induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996). [CrossRef]
  7. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985 (2004). [CrossRef]
  8. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003). [CrossRef] [PubMed]
  9. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354 (2005); "Erratum: Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: Comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 1143 (2005). [CrossRef]
  10. K. A. Zagorulko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovsky, E. M. Dianov, S. Chekalin, Y. A. Matveets, and V. O. Kompanets, "Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation," Opt. Express 12, 5996-6001 (2004). [CrossRef] [PubMed]
  11. L. B. Fu, G. D. Marshall, G. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibers," Electron. Lett. 41, 638-640 (2005). [CrossRef]
  12. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation," Chem. Phys. 77, 131-143 (1983). [CrossRef]
  13. A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at λ = 264 nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002). [CrossRef]
  14. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995). [CrossRef]
  15. D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Technol. 18, R1-R29 (2007). [CrossRef]
  16. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh UV photosenitivity and thermal sensitivity in GeO2 doped optical fibers," Electron. Lett. 29, 1191-1193 (1993). [CrossRef]
  17. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995). [CrossRef]
  18. Y. Park, T.- J. Ahn, Y. H. Kim, W.- T. Han, U.- C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," Appl. Opt. 41, 21-26 (2002). [CrossRef] [PubMed]
  19. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, "Bragg grating characterization by optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 5, 565-567 (1993). [CrossRef]
  20. Y. Park, U.- C. Paek, S. Han, B.- H. Kim, C.- S. Kim, and D. Y. Kim, "Inelastic frozen-in stress in optical fibers," Opt. Commun. 242, 431-436 (2004). [CrossRef]
  21. F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, "Inelastic strain birefringence in optical fibers," Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference on CD-ROM (OSA 2006), paper OWA 2, 2006.
  22. A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004). [CrossRef]
  23. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004). [CrossRef]
  24. V. Kudriasov, D. Majus, V. Sirutkaitis, S. A. Slattery, and D. N. Nikogosyan, "Comparative study of UV absorption changes induced in germanosilicate glass by high-intensity femtosecond pulses at 267, 400 and 800 nm," Opt. Commun. 271, 408-412 (2007). [CrossRef]
  25. N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, "Hydrogen induced reduction of axial stress in optical fiber cores," Appl. Phys. Lett. 74, 516-518 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited