OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5616–5624

Electric field vector characterization of terahertz surface plasmons

Wenqi Zhu and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 15, Issue 9, pp. 5616-5624 (2007)
http://dx.doi.org/10.1364/OE.15.005616


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the ability to characterize independently the vector components of the electric field associated with terahertz surface plasmons. This is accomplished via electro-optic sampling, using an electro-optic crystal placed in close proximity to a corrugated metal foil. The individual electric field vector components are measured using two separate ZnTe crystals. Since ZnTe exhibits isotropic dielectric properties, all of the detection configurations obey identical phase-matching constraints. Furthermore, since ZnTe is characterized by a single independent electro-optic tensor component, the field measurements may be directly compared against one another.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 15, 2007
Revised Manuscript: April 22, 2007
Manuscript Accepted: April 22, 2007
Published: April 24, 2007

Citation
Ajay Nahata and Wenqi Zhu, "Electric field vector characterization of terahertz surface plasmons," Opt. Express 15, 5616-5624 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, in Springer Tracts in Modern Physics, (Springer-Verlag, Berlin, 1988). Vol. 3.
  2. H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005). [CrossRef]
  3. D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007). [CrossRef]
  4. Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  5. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003). [CrossRef]
  6. D. van Labeke and D. J. Barchiesi, "Probes for scanning tunneling optical microscopy: a theoretical comparison," J. Opt. Soc. Am. A 10, 2193-2201 (1993). [CrossRef]
  7. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  8. N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002). [CrossRef]
  9. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007). [CrossRef]
  10. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005). [CrossRef] [PubMed]
  11. B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986). [CrossRef]
  12. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000). [CrossRef]
  13. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, "Electro-optic transceivers for terahertz-wave applications," J. Opt. Soc. Am. B 18, 823-831 (2001). [CrossRef]
  14. A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  15. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). [CrossRef] [PubMed]
  16. A. Yariv, Quantum Electronics (Wiley, New York, 1988).
  17. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004). [CrossRef]
  18. M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989). [CrossRef]
  19. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  20. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited