OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5631–5640

Shifted Fresnel diffraction for computational holography

Richard P. Muffoletto, John M. Tyler, and Joel E. Tohline  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5631-5640 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier-based approaches to calculate the Fresnel diffraction of light provide one of the most efficient algorithms for holographic computations because this permits the use of the fast Fourier transform (FFT). This research overcomes the limitations on sampling imposed by Fourier-based algorithms by the development of a fast shifted Fresnel transform. This fast shifted Fresnel transform is used to develop a tiling approach to hologram construction and reconstruction, which computes the Fresnel propagation of light between parallel planes having different resolutions.

© 2007 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(090.1760) Holography : Computer holography

ToC Category:

Original Manuscript: February 23, 2007
Revised Manuscript: April 17, 2007
Manuscript Accepted: April 20, 2007
Published: April 25, 2007

Richard P. Muffoletto, John M. Tyler, and Joel E. Tohline, "Shifted Fresnel diffraction for computational holography," Opt. Express 15, 5631-5640 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ludman, H. J. Caulfield, and J. Riccobono, Holography for the New Millennium (Springer-Verlag, 2002). [CrossRef]
  2. K. Matsushima and M. Takai, "Recurrence formulas for fast creation of synthetic three-dimensional holograms," Appl. Opt. 39,6587-6594 (2000). [CrossRef]
  3. T. Ito and T. Shimobaba, "One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television," Opt. Express 12,1788-1793 (2004). [CrossRef] [PubMed]
  4. M. L. Huebschman, B. Munjuluri, J. Hunt, and H. R. Garner, "Holographic video display using digital micromirrors," in Proc. SPIE Vol. 5742, Emerging Liquid Crystal Technologies, L.-C. Chien, ed., pp. 1-14 (2005).
  5. O. Nishikawa, T. Okada, H. Yoshikawa, K. Sato, and T. Honda, "High-Speed Holographic-Stereogram Calculation Method Using 2D FFT," in Proc. SPIE Vol. 3010, Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich and S. H. Lee, eds., pp. 49-57 (1997).
  6. D. Abookasis and J. Rosen, "Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints," J. Opt. Soc. Am. A 20,1537-1545 (2003). [CrossRef]
  7. J. Garcia, D. Mas, and R. G. Dorsch, "Fractional-Fourier-transform calculation through the fast-Fouriertransform algorithm," Appl. Opt. 35,7013-7018 (1996). [CrossRef] [PubMed]
  8. M. Lucente, "Diffraction-Specific Fringe Computation for Electro-Holography," Ph.D. thesis, Massachusetts Institute of Technology (1994).
  9. M. Lucente, "Holographic bandwidth compression using spatial subsampling," Opt. Eng. 35,1529-1537 (1996). [CrossRef]
  10. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164,233-245 (1999). [CrossRef]
  11. L. Onural and H. Ozaktas, "Signal processing issues in diffraction and holographic 3DTV," in Proc. EURASIP 13th European Signal Processing Conference (2005).
  12. D. H. Bailey and P. N. Swarztrauber, "The Fractional Fourier Transform and Applications," SIAM Review 33, 389-404 (1991). [CrossRef]
  13. G. B. Esmer and L. Onural, "Simulation of scalar optical diffraction between arbitrarily oriented planes," in First International Symposium on Control, Communications and Signal Processing, pp. 225-228 (2004).
  14. K. Matsushima, H. Schimmel, and F. Wyrowski, "New Creation Algorithm for Digitally Synthesized Holograms in Surface Model by Diffraction from Tilted Planes," in Proc. SPIE Vol. 4659, Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, and T. J. Trout, eds., pp. 53-60 (2002).
  15. K. Matsushima and A. Kondoh, "Wave optical algorithm for creating digitally synthetic holograms of threedimensional surface objects," in Proc. SPIE Vol. 5005, Practical Holography XVII and Holographic Materials IX, T. H. Jeong and S. H. Stevenson, eds., pp. 190-197 (2003).
  16. D. Leseberg and C. Frere, "Computer-generated holograms of 3-D objects composed of tilted planar segments," Appl. Opt. 27,3020-3024 (1988). [CrossRef] [PubMed]
  17. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, "Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes," Opt. Express 13,9935-9940 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited