OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5730–5741

A quantum chemical approach to the design of chiral negative index materials

Alexander Baev, Marek Samoc, Paras N. Prasad, Mykhaylo Krykunov, and Jochen Autschbach  »View Author Affiliations


Optics Express, Vol. 15, Issue 9, pp. 5730-5741 (2007)
http://dx.doi.org/10.1364/OE.15.005730


View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents methodology developed for the computational modeling and design of negative refractive index materials (NIMs) based on molecular chirality. An application of the methodology is illustrated by ab initio computations on two organometallic molecules which constitute the monomer units of a chiral polymer. Comparisons with experimental data for the polymer are made. Even though the resulting chirality parameter for the pristine material is small, it is shown that negative index can be achieved by introducing sharp plasmonic resonances with metal nanoparticle inclusions.

© 2007 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers

ToC Category:
Metamaterials

History
Original Manuscript: January 5, 2007
Revised Manuscript: April 17, 2007
Manuscript Accepted: April 17, 2007
Published: April 25, 2007

Citation
Alexander Baev, Marek Samoc, Paras N. Prasad, Mykhaylo Krykunov, and Jochen Autschbach, "A quantum chemical approach to the design of chiral negative index materials," Opt. Express 15, 5730-5741 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. N. Grigorenko, "Negative refractive index in artificial metamaterials," Opt. Lett. 31, 2483-2485 (2006). [CrossRef] [PubMed]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003). [CrossRef]
  4. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004). [CrossRef] [PubMed]
  5. Y. Jin and S. He, "Focusing by a slab of chiral medium," Opt. Express 13, 4974-4979 (2005). [CrossRef] [PubMed]
  6. J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006). [CrossRef]
  7. J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006). [CrossRef]
  8. V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006). [CrossRef]
  9. Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006). [CrossRef]
  10. V. Yannopapas, "Negative index of refraction in artificial chiral materials," J. Phys.: Condens. Matter 18, 6883-6890 (2006). [CrossRef]
  11. E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937). [CrossRef]
  12. K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002). [CrossRef]
  13. J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996). [CrossRef]
  14. S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996). [CrossRef]
  15. V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002). [CrossRef] [PubMed]
  16. M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006). [CrossRef]
  17. C. R. Jeggo, "Nonlinear optics and optical activity," J. Phys. C: Solid State Physics 5, 330-337 (1972). [CrossRef]
  18. A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).
  19. M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006). [CrossRef]
  20. J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002). [CrossRef]
  21. J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002). [CrossRef]
  22. E. J. Baerends et al., Amsterdam density functional, Theoretical Chemistry, Vrije Universiteit, Amsterdam (URL http://www.scm.com).
  23. M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005). [CrossRef]
  24. J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006). [CrossRef] [PubMed]
  25. W. T. Doyle, "Optical properties of a suspension of metal spheres," Phys. Rev. B 39, 9852-9858 (1989). [CrossRef]
  26. S. Tretyakov, A. Sihvola, and L. Jylhä, "Backward-wave regime and negative refraction in chiral composites," arXiv:cond-mat/0509287, 1 (2005).
  27. J. Autschbach, "Density Functional Theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and Optical Activity," Coord. Chem. Rev., in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited