OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5851–5859

Optical modulator on silicon employing germanium quantum wells

Jonathan E. Roth, Onur Fidaner, Rebecca K. Schaevitz, Yu-Hsuan Kuo, Theodore I. Kamins, James S. Harris, Jr., and David A. B. Miller  »View Author Affiliations

Optics Express, Vol. 15, Issue 9, pp. 5851-5859 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an electroabsorption modulator on a silicon substrate based on the quantum confined Stark effect in strained germanium quantum wells with silicon-germanium barriers. The peak contrast ratio is 7.3 dB at 1457 nm for a 10 V swing, and exceeds 3 dB from 1441 nm to 1461 nm. The novel side-entry structure employs an asymmetric Fabry-Perot resonator at oblique incidence. Unlike waveguide modulators, the design is insensitive to positional misalignment, maintaining > 3 dB contrast while translating the incident beam 87 μm and 460 μm in orthogonal directions. Since the optical ports are on the substrate edges, the wafer top and bottom are left free for electrical interconnections and thermal management.

© 2007 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5750) Optical devices : Resonators
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Optical Devices

Original Manuscript: March 13, 2007
Revised Manuscript: April 20, 2007
Manuscript Accepted: April 25, 2007
Published: April 27, 2007

Jonathan E. Roth, Onur Fidaner, Rebecca K. Schaevitz, Yu-Hsuan Kuo, Theodore I. Kamins, James S. Harris, and David A. B. Miller, "Optical modulator on silicon employing germanium quantum wells," Opt. Express 15, 5851-5859 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, "Physical reasons for optical interconnection," Int. J. Optoelectron. 11, 155-168 (1997).
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000). [CrossRef]
  3. R. Soref and B. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  4. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, "Electric field dependence of optical absorption near the bandgap of quantum well structures," Phys. Rev. B 32, 1043-1060 (1985). [CrossRef]
  5. R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974). [CrossRef]
  6. K. W. Goossen, J. A. Walker, L. A. D'Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B.  Miller "GaAs MQW Modulators Integrated with Silicon CMOS" IEEE Photon. Technol. Lett. 7, 360-362 (1995). [CrossRef]
  7. J. Deboeck and G. Borghs, "III-V on Si: heteroepitaxy versus lift-off techniques," J. Cryst. Growth 127, 85 -92 (1993).
  8. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615--618 (2004). [CrossRef] [PubMed]
  9. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fedeli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006). [CrossRef] [PubMed]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  11. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005). [CrossRef]
  12. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  13. P. Yu, J. Wu, and B. Zhu, "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328-1-7 (2006). [CrossRef]
  14. J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, "Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on an SOI platform," Opt. Express 15, 623-628 (2007). [CrossRef] [PubMed]
  15. Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005). [CrossRef] [PubMed]
  16. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. HarrisJr., "Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators," IEEE J. Sel. Top. Quantum Electron. 12, 1503-1513 (2006). [CrossRef]
  17. O. Qasaimeh and P. Bhattacharya, "SiGe-Si quantum-well electroabsorption modulators," IEEE Photon. Technol. Lett. 10807 - 809 (1998). [CrossRef]
  18. Y. Miyake, J. Y. Kim, Y. Shiraki, and S. Fukatsu, "Absence of Stark shift in strained Si1-xGex/Si type-I quantum wells," Appl. Phys. Lett. 68, 2097-2099 (1996). [CrossRef]
  19. M. Whitehead and G. Parry, "High-contrast reflection modulation at normal incidence in asymmetric multiple quantum well Fabry-Perot structure," Electron. Lett. 25, 566-568 (1989). [CrossRef]
  20. N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, "Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects," IEEE J. Sel. Top. Quantum Electron. 11, 338-342 (2005). [CrossRef]
  21. S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, "High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers," Appl. Phys. Lett. 73, 2125-2127 (1998). [CrossRef]
  22. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Appl. Phys. Lett. 75, 2909-2911 (1999). [CrossRef]
  23. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, "Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality," Appl. Phys. Lett. 85, 2815-2817 (2004). [CrossRef]
  24. S. Adachi, "Model dielectric constants of Si and Ge," Phys. Rev. B 38, 12966-12976 (1988). [CrossRef]
  25. D. J. Godbey, A. H. Krist, K. D. Hobart, and M. E. Twigg, "Selective removal of Si1-xGex from (100) Si using HNO3 and HF," J. Electrochem. Soc. 139, 2943-2947 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited