OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 19–31

Inspiratory contrast for in vivo optical imaging

Kenneth T. Kotz, Sanhita S. Dixit, Ashley D. Gibbs, Juan M. Orduna, Zishan Haroon, Khalid Amin, and Gregory W. Faris  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 19-31 (2008)
http://dx.doi.org/10.1364/OE.16.000019


View Full Text Article

Enhanced HTML    Acrobat PDF (9678 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of inspired oxygen and carbon dioxide as a possible route to increase contrast in optical imaging of cancerous tissue. Differential imaging in human xenograft rodent models of cancer exhibits significant variation in signal between normal and cancerous tissue. This differential cancer-specific contrast is stronger and more consistent than the conventional static contrast. This differential technique exploits the response of abnormal tumor vasculature to inhaled gases and could provide a promising alternative to supplement mainstream cancer imaging modalities such as x-rays and MRI.

© 2008 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 17, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 17, 2007
Published: December 21, 2007

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Kenneth T. Kotz, Sanhita S. Dixit, Ashley D. Gibbs, Juan M. Orduna, Zishan Haroon, Khalid Amin, and Gregory W. Faris, "Inspiratory contrast for in vivo optical imaging," Opt. Express 16, 19-31 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-19


Sort:  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, B. Chance, and A. Yodh, "Differential diffuse optical tomography," Opt. Express 5, 230-242 (1999). [CrossRef] [PubMed]
  2. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, "Optical tomographic imaging of dynamic features of dense-scattering media," J. Opt. Soc. Am. A 18, 3018-3036 (2001). [CrossRef]
  3. E. M. C. Hillman and A. Moore, "All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast," Nat. Photonics 1, 526-530 (2007). [CrossRef]
  4. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution, " Opt. Express 6, 49-57 (2000). [CrossRef] [PubMed]
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express 2, 411-423 (1998). [CrossRef] [PubMed]
  6. J. W. Severinghaus and J. F. Kelleher, "Recent developments in pulse oximetry," Anesthesiology 76, 1018-1038 (1992). [CrossRef] [PubMed]
  7. J. E. Sinex, "Pulse oximetry: Principles and limitations," Am. J. Emerg. Med. 17, 59-66 (1999). [CrossRef] [PubMed]
  8. P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other diseases," Nature 407, 249-257 (2000). [CrossRef] [PubMed]
  9. M. Hockel and P. Vaupel, "Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects," J. Natl. Cancer Inst. 93, 266-276 (2001). [CrossRef] [PubMed]
  10. C. Menon and D. L. Fraker, "Tumor oxygenation status as a prognostic marker," Cancer Lett. 221, 225-235 (2005). [CrossRef] [PubMed]
  11. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, "Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development," J. Biomed. Opt. 10, 044004 (2005). [CrossRef]
  12. P. Büchler, H. A. Reber, R. S. Lavey, J. Tomlinson, M. W. Büchler, H. Friess, and O. J. Hines, "Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model," J. Surg. Res. 120, 295-303 (2004). [CrossRef] [PubMed]
  13. N. Chaudary and R. P. Hill, "Hypoxia and metastasis," Clin. Cancer Res. 13, 1947-1949 (2007). [CrossRef] [PubMed]
  14. U. Sunar, H. Quon, T. Durduran, J. Zhang, and J. Du, et al., "Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study," J. Biomed. Opt. 11, 064021 (2006). [CrossRef]
  15. J. G. Rajendran and D. A. Mankoff, "Beyond detection: Novel applications for PET imaging to guide cancer therapy," J. Nucl. Med. 48, 855-856 (2007). [CrossRef] [PubMed]
  16. N. Chan, M. Milosevic, and R. G. Bristow, "Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies," Future Oncol. 3, 329-341 (2007). [CrossRef] [PubMed]
  17. J. M. Brown and W. R. Wilson, "Exploiting tumour hypoxia in cancer treatment," Nat Rev Cancer 4, 437-447 (2004). [CrossRef] [PubMed]
  18. M. W. Dewhirst, I. C. Navia, D. M. Brizel, C. Willett, and T. W. Secomb, "Multiple etiologies of tumor hypoxia require multifaceted solutions," Clin. Cancer Res. 13, 375-377 (2007). [CrossRef] [PubMed]
  19. J. H. Kaanders, J. Bussink, and A. J. van der Kogel, "ARCON: A novel biology-based approach in radiotherapy," Lancet Oncol. 3, 728-737 (2002). [CrossRef] [PubMed]
  20. J. H. Kaanders, L. A. Pop, H. A. Marres, I. Bruaset, F. J. van den Hoogen, M. A. Merkx, and A. J. van der Kogel, "ARCON: Experience in 215 patients with advanced head-and-neck cancer," Int. J. Radiat. Oncol. Biol. Phys. 52, 769-778 (2002). [CrossRef] [PubMed]
  21. M. Rijpkema, J. H. Kaanders, F. B. Joosten, A. J. van der Kogel, and A. Heerschap, "Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging," Int. J. Radiat. Oncol. Biol. Phys. 53, 1185-1191 (2002). [CrossRef] [PubMed]
  22. C. Aquino-Parsons, P. Lim, A. Green, and A. I. Minchinton, "Carbogen inhalation in cervical cancer: Assessment of oxygenation change," Gynecol. Oncol. 74, 259-264 (1999). [CrossRef] [PubMed]
  23. J. R. Griffiths, N. J. Taylor, F. A. Howe, M. I. Saunders, S. P. Robinson, P. J. Hoskin, M. E. B. Powell, M. Thoumine, L. A. Caine, and H. Baddeley, "The response of human tumors to carbogen breathing, monitored by Gradient-Recalled Echo Magnetic Resonance Imaging," Int. J. Radiat. Oncol. Biol. Phys. 39, 697-701 (1997). [CrossRef] [PubMed]
  24. E. L. Hull, D. L. Conover, and T. H. Foster, "Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy," Br. J. Cancer 79, 1709-1716 (1999). [CrossRef] [PubMed]
  25. G. Ilangovan, H. Li, J. L. Zweier, M. C. Krishna, J. B. Mitchell, and P. Kuppusamy, "In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: Effect of carbogen-breathing," Magn. Reson. Med. 48, 723-730 (2002). [CrossRef] [PubMed]
  26. M. Stubbs, S. P. Robinson, C. Hui, N. M. Price, L. M. Rodrigues, F. A. Howe, and J. R. Griffiths, "The importance of tumor metabolism in cancer prognosis and therapy; pre-clinical studies on rodent tumors with agents that improve tumor oxygenation," Adv. Enzyme Regul. 42, 131-141 (2002). [CrossRef] [PubMed]
  27. J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, and H. Liu, "Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping," J. Biomed. Opt. 8, 53-62 (2003). [CrossRef] [PubMed]
  28. H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, "Near-infrared spectroscopy and imaging of tumor vascular oxygenation," Methods Enzymol. 386, 349-378 (2004). [CrossRef] [PubMed]
  29. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, "Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome," Cancer Res. 64, 7553-7561 (2004). [CrossRef] [PubMed]
  30. S. P. Robinson, F. A. Howe, L. M. Rodrigues, M. Stubbs, and J. R. Griffiths, "Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow," Semin. Radiat. Oncol. 8, 197-207 (1998). [CrossRef] [PubMed]
  31. F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  32. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, "Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry," Lancet 2, 1063-1066 (1986). [CrossRef] [PubMed]
  33. V. Quaresima, R. Springett, M. Cope, J. T. Wyatt, D. T. Delpy, M. Ferrari, and C. E. Cooper, "Oxidation and reduction of cytochrome oxidase in the neonatal brain observed by in vivo near-infrared spectroscopy," Biochim. Biophys. Acta 1366, 291-300 (1998). [CrossRef] [PubMed]
  34. X. Wu and G. W. Faris, "Compensated transillumination," Appl. Opt. 38, 4262-4265 (1999). [CrossRef]
  35. K. S. Kalogerakis, K. T. Kotz, K. Rand, and G. W. Faris, "Animal imaging using immersion," Proc. SPIE 4955, 145-153 (2003). [CrossRef]
  36. K. T. Kotz, K. S. Kalogerakis, W. N. Boenig, K. Amin, and G. W. Faris, "Dynamic imaging of tumor vasculature in rodents: Carbogen-induced contrast enhancement," Proc. SPIE 5312, 273-277 (2004). [CrossRef]
  37. M. Gerken and G. W. Faris, "Frequency-domain immersion technique for accurate optical property measurements of turbid media," Opt. Lett. 24, 1726-1728 (1999). [CrossRef]
  38. S. Prahl, "Optical absorption of hemoglobin," (Oregon Medical Laser Center).
  39. M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, "Methods of quantitating cerebral near infrared spectroscopy data," Adv. Exp. Med. Biol. 222, 183-189 (1988). [PubMed]
  40. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal. Biochem. 227, 54-68 (1995). [CrossRef] [PubMed]
  41. D. L. Conover, B. M. Fenton, T. H. Foster, and E. L. Hull, "An evaluation of near infrared spectroscopy and cryospectrophotometry estimates of haemoglobin oxygen saturation in a rodent mammary tumour model," Phys. Med. Biol. 45, 2685-2700 (2000). [CrossRef] [PubMed]
  42. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties," Appl. Opt. 28, 2331-2336 (1989) (Eq. 16). [CrossRef] [PubMed]
  43. B. P. J. van der Sanden, A. Heerschap, L. Hoofd, A. W. Simonetti, K. Nicolay, A. van der Toorn, W. Colier, and A. J. van der Kogel, "Effect of carbogen breathing on the physiological profile of human glioma xenografts," Magn. Reson. Med. 42, 490-499 (1999). [CrossRef] [PubMed]
  44. O. Thews, D. K. Kelleher, and P. Vaupel, "Dynamics of tumor oxygenation and red blood cell flux in response to inspiratory hyperoxia combined with different levels of inspiratory hypercapnia," Radiother. Oncol. 62, 77-85 (2002). [CrossRef] [PubMed]
  45. M. O. Leach, "Application of magnetic resonance imaging to angiogenesis in breast cancer," Breast Cancer Res 3, 22-27 (2001). [CrossRef] [PubMed]
  46. M. Tozaki, "Interpretation of breast MRI: correlation of kinetic and morphological parameters with pathological findings," Magn Reson Med Sci 3, 189-197 (2004). [CrossRef]
  47. C. Baudelet and B. Gallez, "Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by laser doppler flowmetry and oxygen measurements by luminescence-based probes," Magn. Reson. Imaging 22, 905-912 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2146 KB)     
» Media 2: AVI (2154 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited