OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 219–224

Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing

Antoine Lesuffleur, Hyungsoon Im, Nathan C. Lindquist, Kwan Seop Lim, and Sang-Hyun Oh  »View Author Affiliations

Optics Express, Vol. 16, Issue 1, pp. 219-224 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1723 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon resonance (SPR) imaging is a powerful technique for high-throughput, real-time, label-free characterization of molecular interactions in a microarray format. In this paper, we demonstrate SPR imaging with nanohole arrays illuminated by a laser source. Periodic nanoholes couple incident photons into SPs, obviating the need for the prism used in conventional SPR instruments, while a laser source provides the intensity, stability and spectral coherence to improve the detection sensitivity. The formation of a self-assembled monolayer of alkanethiolates on gold changed the laser transmission by more than 35%, and binding kinetics were measured in parallel from a 5×3 microarray of nanohole sensors. These results demonstrate the potential of nanohole sensors for high-throughput SPR imaging on microarrays.

© 2008 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: November 7, 2007
Revised Manuscript: December 19, 2007
Manuscript Accepted: December 20, 2007
Published: January 2, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Antoine Lesuffleur, Hyungsoon Im, Nathan C. Lindquist, Kwan Seop Lim, and Sang-Hyun Oh, "Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing," Opt. Express 16, 219-224 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. B. Liedberg, C. Nylander and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4,299 (1983). [CrossRef]
  2. E. Yeatman and E. A. Ash, "Surface-plasmon microscopy," Electron Lett. 23, 1091 (1987). [CrossRef]
  3. B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615 (1988). [CrossRef]
  4. J. S. Shumaker-Parry, R. Aebersold and C. T. Campbell "Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy," Anal. Chem. 76, 2071 (2004). [CrossRef] [PubMed]
  5. E. A. Smith and R. M. Corn, "Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format," Appl. Spectrosc. 57, 320A (2003). [CrossRef] [PubMed]
  6. E. Fu, J. Foley and P. Yager, "Wavelength-tunable surface plasmon resonance microscope," Rev. Sci. Instrum. 74 (6), 3182 (2003). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998). [CrossRef]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  9. A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813 (2004). [CrossRef]
  10. A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon and A.G. Brolo, "On-chip surface-based detection with nanohole arrays," Anal. Chem. 79,4094 (2007). [CrossRef] [PubMed]
  11. A. Lesuffleur, H. Im, N.C. Lindquist and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007). [CrossRef]
  12. L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91, 123115 (2007). [CrossRef]
  13. Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550 (1998). [CrossRef]
  14. M. Mrksich, G. Sigal and G. M. Whitesides, "Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold," Langmuir 11, 4383 (1995). [CrossRef]
  15. T. M. Chinowsky, T. Mactutis, E. Fu and P. Yager, "Optical and electronic design for a high-performance surface plasmon resonance imager," Proc. SPIE,  5261, 173 (2004). [CrossRef]
  16. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636 (1998). [CrossRef]
  17. For a high signal-to-noise ratio, it is also important that the cut-off wavelength of a single nanohole is smaller than the laser wavelength in water, which ensures that direct transmission through holes, as opposed to SP-mediated transmission, does not contribute significantly to the background noise.
  18. N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J. C. Walter and J. LaBaer, "Self-assembling protein microarrays" Science 305, 86 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited