OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 279–286

A near-field actuated optical nanocavity

Benoit Cluzel, Loïc Lalouat, Philippe Velha, Emmanuel Picard, David Peyrade, Jean-Claude Rodier, Thomas Charvolin, Philippe Lalanne, Frédérique de Fornel, and Emmanuel Hadji  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 279-286 (2008)
http://dx.doi.org/10.1364/OE.16.000279


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: March 16, 2007
Revised Manuscript: July 20, 2007
Manuscript Accepted: August 1, 2007
Published: January 3, 2008

Citation
Benoit Cluzell, Loic Lalouat, Philippe Velha, Emmanuel Picard, David Peyrade, Jean-Claude Rodier, Thomas Charvolin, Philippe Lalanne, Frédérique de Fornel, and Emmanuel Hadji, "A near-field actuated optical nanocavity," Opt. Express 16, 279-286 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-279


Sort:  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, V. S. Volkov, T. Sondergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B. 66, 235204 (2002). [CrossRef]
  2. D. Gérard,  et al., "Near-field probing of active photonic-crystal structures," Opt. Lett. 27, 173-175 (2002). [CrossRef]
  3. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides," Phys. Rev. Lett. 94, 123901-123904 (2005). [CrossRef] [PubMed]
  4. B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, "Experimental demonstration of Bloch mode parity change in photonic crystal waveguide," Appl. Phys. Lett. 85, 2682-2684 (2004). [CrossRef]
  5. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, "Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunnelling microscope," Phys. Rev. B 48, 2680-2683 (1993). [CrossRef]
  6. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005). [CrossRef] [PubMed]
  7. I. Märki, M. Salt, and H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006). [CrossRef] [PubMed]
  8. I. Markï, M. Salt, F. Schädelin, P.-A. Künzi, U. Staufer, and H. P. Herzig, "Photonic crystal waveguides and tunable microcavities," Proc. Optics in Computing, Topical Meeting (EOS), 19 (2004).
  9. W. C. L. Hopman,  et al., "Nanomechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006). [CrossRef] [PubMed]
  10. J. T. Robinson, S. F. Preble and M. Lipson, "Imaging of highly confined modes in sub-micron scale silicon waveguides using transmission based near-field scanning Optical Microscopy," Opt. Express 14, 10588-10595 (2006). [CrossRef] [PubMed]
  11. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007). [CrossRef] [PubMed]
  12. B. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nat. Mater. 4, 207-209 (2005). [CrossRef]
  13. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point defect cavity formed in two dimensional photonic crystal slab with one sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006). [CrossRef]
  14. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin," Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  15. P. Vehla, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultra-high reflectivity photonic bandgap mirrors in a ridge SOI waveguide," Appl. Phys. Lett. 89, 171121 (2006)
  16. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005) [CrossRef] [PubMed]
  17. E. Silberstein, Ph. Lalanne, J. P. Hugonin, and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865-2875 (2001). [CrossRef]
  18. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultra small mode volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005). [CrossRef] [PubMed]
  19. H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000). [CrossRef] [PubMed]
  20. M. L. Roukes, "Nanoelectromechanical systems face the future," Phys. World 14, 25-31 (2001).
  21. S. Mujumdar, F. Koenderink, R. West, and V. Sandoghdar, "Nano-optomechanical characterization and manipulation of Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 13, 253-261 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited