OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 304–314

Inverse optical design of the human eye using likelihood methods and wavefront sensing

Julia A. Sakamoto, Harrison H. Barrett, and Alexander V. Goncharov  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 304-314 (2008)
http://dx.doi.org/10.1364/OE.16.000304


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are developing a method for estimating patient-specific ocular parameters, including surface curvatures, conic constants, tilts, decentrations, thicknesses, refractive indices, and index gradients. The data consist of the raw detector outputs from one or more Shack-Hartmann wavefront sensors, and the parameters in the eye model are estimated by maximizing the likelihood. A Gaussian noise model is used to emulate electronic noise, so maximum likelihood reduces to nonlinear least-squares fitting between the data and the output of our optical design program. The Fisher information matrix for the Gaussian model was explored to compute bounds on the variance of the estimates for different system configurations. In this preliminary study, an accurate estimate of a chosen subset of ocular parameters was obtained using a custom search algorithm and a nearby starting point to avoid local minima in the complex likelihood surface.

© 2008 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.2740) Optical design and fabrication : Geometric optical design

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 18, 2007
Revised Manuscript: December 12, 2007
Manuscript Accepted: December 13, 2007
Published: January 4, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Julia A. Sakamoto, Harrison H. Barrett, and Alexander V. Goncharov, "Inverse optical design of the human eye using likelihood methods and wavefront sensing," Opt. Express 16, 304-314 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-304


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, "Instrument for measuring the misalignments of ocular surfaces," Opt. Express 14, 10945 (2006). http://www.opticsexpress.org/abstract.cfm?id=116620 [CrossRef] [PubMed]
  2. P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A 23, 509 (2006). [CrossRef]
  3. P. Rosales, M. Dubbelman, S. Marcos, and G. L. Van der Heijde, "Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging," J. Vis. 6, 1057 (2006). [CrossRef] [PubMed]
  4. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)," Vision Res. 45, 2352 (2005). [CrossRef] [PubMed]
  5. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro," Vision Res. 42, 1683 (2002). [CrossRef] [PubMed]
  6. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631 (2001). http://www.opticsexpress.org/abstract.cfm?id=64333 [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405 (2002). http://www.opticsexpress.org/abstract.cfm?id=68843 [PubMed]
  8. J. Liang, D. R. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884 (1997). [CrossRef]
  9. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273 (1985). [CrossRef] [PubMed]
  10. M. Dubbelman and G. L. Van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox," Vision Res. 41, 1867 (2001). [CrossRef] [PubMed]
  11. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522 (1998). [CrossRef]
  12. M. T. Sheehan, A. V. Goncharov, V. M. O’Dwyer, V. Toal, and C. Dainty, "Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field," Opt. Express 15, 7367 (2007). [CrossRef] [PubMed]
  13. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881 (1999). [CrossRef]
  14. E. Mallen and P. Kashyap, "Technical note: measurement of retinal contour and supine axial length using the Zeiss IOLMaster," Ophthal. Physiol. Opt. 27, 404 (2007). [CrossRef]
  15. P. Artal and A. Guirao, "Contributions of the cornea and the lens to the aberrations of the human eye," Opt. Lett. 23, 1713 (1998). [CrossRef]
  16. S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1 (2003). [CrossRef]
  17. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes," J. Opt. Soc. Am. A 12, 2348 (1995). [CrossRef]
  18. D. Redding, P. Dumont, and J. Yu, "Hubble Space Telescope prescription retrieval," Appl. Opt. 32, 1728 (1993). [CrossRef] [PubMed]
  19. G. R. Brady and J. Fienup, "Phase retrieval as an optical metrology tool," in Optifab: Technical digest, SPIE Technical Digest TD03, pp. 139-141 (2005).
  20. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004). [CrossRef]
  21. J. F. Koretz, S. A. Strenk, LawrenceM. Strenk, and John L. Semmlow, "Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study," J. Opt. Soc. Am. A 21, 346 (2004). [CrossRef]
  22. M. Dubbelman, H. A. Weeber, G. L. Van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta. Ophthalmol. Scand. 80, 379 (2002). [CrossRef] [PubMed]
  23. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, "Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study," Invest. Ophthalmol. Visual Sci. 40, 1162 (1999).
  24. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, "Representation of videokeratoscopic height data with Zernike polynomials," J. Opt. Soc. Am. A 12, 2105 (1995). [CrossRef]
  25. R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219 (2006). [CrossRef]
  26. F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, "Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing," J. Opt. Soc. Am. A 21, 683 (2004). [CrossRef]
  27. A. Guirao and P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955 (2000). [CrossRef]
  28. J. Straub, J. Schwiegerling, and A. Gupta, "Design of a compact Shack-Hartmann aberrometer for real-time measurement of aberrations in human eyes" in Vision Science and Its Applications, OSA Technical Digest (Optical Society of America, Washington DC, 2001), pp. 110-113.
  29. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29 (2005). [CrossRef]
  30. A. V. Goncharov and C. Dainty, "Wide-field schematic eye models with gradient-index lens," J. Opt. Soc. Am. A 24, 2157 (2007). [CrossRef]
  31. R. Navarro, F. Palos, and L. M. González, "Adaptive model of the gradient index of the human lens. I. optics formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175 (2007). [CrossRef]
  32. R. Navarro, F. Palos, and L. M. González, "Adaptive model of the gradient index of the human lens. II. optics of the accommodating aging lens," J. Opt. Soc. Am. A 24, 2911 (2007). [CrossRef]
  33. H. H. Barrett, C. Dainty, and D. Lara, "Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions," J. Opt. Soc. Am. A 24, 391 (2007). [CrossRef]
  34. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, "Reconstruction of the optical system of the human eye with reverse ray-tracing," Opt. Express (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited