OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 328–333

High efficiency silicon nitride surface grating couplers

Guillaume Maire, Laurent Vivien, Guillaume Sattler, Andrzej Kaźmierczak, Benito Sanchez, Kristinn B. Gylfason, Amadeu Griol, Delphine Marris-Morini, Eric Cassan, Domenico Giannone, Hans Sohlström, and Daniel Hill  »View Author Affiliations

Optics Express, Vol. 16, Issue 1, pp. 328-333 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High efficiency surface grating couplers for silicon nitride waveguides have been designed, fabricated, and characterized. Coupling efficiencies exceeding 60% are reported at a wavelength of 1.31 µm, as well as angular and wavelength -3 dB tolerances of 4° and 50 nm, respectively. When the wavelength is increased from 1310 nm to 1450 nm the coupling efficiency progressively decreases but remains above 20% at 1450 nm. The influence of the duty ratio of the grating has also been investigated: maximum coupling efficiency was obtained at 50% duty ratio.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Diffraction and Gratings

Original Manuscript: August 1, 2007
Revised Manuscript: October 29, 2007
Manuscript Accepted: October 31, 2007
Published: January 4, 2008

Guillaume Maire, Laurent Vivien, Guillaume Sattler, Andrzej Kazmierczak, Benito Sanchez, Kristinn B. Gylfason, Amadeu Griol, Delphine Marris-Morini, Eric Cassan, Domenico Giannone, Hans Sohlström, and Daniel Hill, "High efficiency silicon nitride surface grating couplers," Opt. Express 16, 328-333 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006). [CrossRef] [PubMed]
  2. A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, "Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 17, 1447-1449 (2005). [CrossRef]
  3. M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, and S. Laval, J.-M. Fédéli, J.-F. Damlencourt, and J. M. Hartmann, and S. Kolev, "Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation," Appl. Phys. Lett. 87, 231109 (2005). [CrossRef]
  4. A. Morand, Y. Zhang, B. Martin, K. P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, "Ultra-compact microdisk resonator filters on SOI substrate," Opt. Express 14, 12814-12821 (2006). [CrossRef] [PubMed]
  5. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya and and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003). [CrossRef]
  6. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006). [CrossRef] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  8. Q1. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," IEEE Proc. Optical and Quantum Electron. 26, 977-986 (1994). [CrossRef]
  9. K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000). [CrossRef]
  10. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides," IEEE Photon. Technol. Lett. 16, 1661-1663 (2004). [CrossRef]
  11. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004). [CrossRef]
  12. Q2. S. M. Zheng, H. Chen, and A. W. Poon, "Microring-resonator cross-connect filters in silicon nitride : rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electronics 12, 1380-1387 (2006). [CrossRef]
  13. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.-M. Fédéli, and L. El Melhaoui, "Light injection in SOI microwaveguides using high-efficiency grating couplers," J. Lightwave Technol. 24, 3810-3815 (2006). [CrossRef]
  14. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071-6077 (2006). [CrossRef]
  15. K. C. Chang, V. Shah, and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles," J. Opt. Soc. Am. A 7, 804-812 (1980).
  16. N. Landru, D. Pascal, and A. Koster, "Modeling of two-dimensional grating couplers on silicon-on-insulator waveguides using beam propagation method," Opt. Commun. 196, 139-147 (2001). [CrossRef]
  17. R. M. Emmons and D. G. Hall, "Burried oxide silicon-on-insulator structures II : waveguide grating couplers," IEEE J. Quantum Electron. 28, 164-175 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited