OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 426–434

Spontaneous emission control in high-extraction efficiency plasmonic crystals

Hideo Iwase, Dirk Englund, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 426-434 (2008)
http://dx.doi.org/10.1364/OE.16.000426


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally and theoretically investigate exciton-field coupling for the surface plasmon polariton (SPP) in waveguide-confined (WC) anti-symmetric modes of hexagonal plasmonic crystals in InP-TiO-Au-TiO-Si heterostructures. The radiative decay time of the InP-based transverse magnetic (TM)-strained multi-quantum well (MQW) coupled to the SPP modes is observed to be 2.9–3.7 times shorter than that of a bare MQW wafer. Theoretically we find that 80% of the enhanced photoluminescence (PL) is emitted into SPP modes, and 17% of the enhanced PL is redirected into WC-anti-symmetric modes. In addition to the direct coupling of the excitons to the plasmonic modes, this demonstration is also useful for the development of high-temperature SPP lasers, the development of highly integrated photo-electrical devices, or miniaturized biosensors.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 1, 2007
Revised Manuscript: December 9, 2007
Manuscript Accepted: December 9, 2007
Published: January 4, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Hideo Iwase, Dirk Englund, and Jelena Vuckovic, "Spontaneous emission control in high-extraction efficiency plasmonic crystals," Opt. Express 16, 426-434 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-426


Sort:  Year  |  Journal  |  Reset  

References

  1. Y. Gong, and J. Vuèkoviæ, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007). [CrossRef]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  3. A. Neogi, C. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002). [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  5. D. Sarid, "Long-range surface plasmon waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  6. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004). [CrossRef] [PubMed]
  7. F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, "Coupling between long range surface plasmon polariton mode and dielectric waveguide mode," Appl. Phys. Lett. 90, 141101 (2007). [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  9. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999). [CrossRef]
  10. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  11. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long-wavelength (λ ≈ 8-11.5 µm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366-1368 (1998). [CrossRef]
  12. T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85, 3968-3970 (2004). [CrossRef]
  13. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-123 (2007). [CrossRef] [PubMed]
  14. L. D. Landau, Electrodynamics of Continuous Media (Pergamon, New York, 1984).
  15. J. Vuèkoviæ, M. Lonèar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996). [CrossRef] [PubMed]
  17. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  18. R. K. Lee, Y. Xu, and A. Yariv, "Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 1438-1442 (2000). [CrossRef]
  19. S. Adachi, Physical Properties of III-V semiconductor compounds (Wiley, New York, 1992). [CrossRef]
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited