OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 456–465

Air-trench splitters for ultra-compact ring resonators in low refractive index contrast waveguides

Nazli Rahmanian, Seunghyun Kim, Yongbin Lin, and Gregory P. Nordin  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 456-465 (2008)
http://dx.doi.org/10.1364/OE.16.000456


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate air-trench splitters in low index contrast perfluorocyclobutyl (PFCB) waveguides. Splitters are fabricated by etching 800 nm wide high aspect ratio (18:1) trenches. The measured optical loss is 0.4 dB/splitter. The reflection/transmission splitting ratio is 0.859/0.141, which closely matches two-dimensional finite difference time domain (2D-FDTD) simulation results. Air-trench splitters and bends are used to demonstrate an ultra-compact ring resonator (RR) with a size reduction of 1,700 compared to a RR based on traditional curved waveguides in the same material system. A comparison between the RR’s measured and analytically calculated performance shows close agreement when splitter and bend losses are taken into account.

© 2008 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.1360) Optical devices : Beam splitters
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: November 28, 2007
Revised Manuscript: December 25, 2007
Manuscript Accepted: January 2, 2008
Published: January 4, 2008

Citation
Nazli Rahmanian, Seunghyun Kim, Yongbin Lin, and Gregory P. Nordin, "Air-trench splitters for ultra-compact ring resonators in low refractive index contrast waveguides," Opt. Express 16, 456-465 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-456


Sort:  Year  |  Journal  |  Reset  

References

  1. D. -G. Sun, Y. Zha, T. Liu, Y. Zhang, X. Li, and X. Fu, "Demonstration for rearrangeable nonblocking 8×8 matrix optical switches based on extended banyan networks," Opt. Express 15,9347-9356 (2007). [CrossRef] [PubMed]
  2. W. Lin, C. J. Sun, and K. M. Schmidt, "Hybrid integration platform based on silica on silicon planar lightwave circuits," Proc. of SPIE 6476, (2007).
  3. W. -Y. Chen, R. Grover, T. A. Ibrahim, V. Van, W. N. Herman, and P. -T. Ho, "High-Finesse Laterally Coupled Single-Mode Benzocyclobutene Microring Resonators," IEEE Photon. Tech. Lett. 16,470-472, (2004). [CrossRef]
  4. A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, "Ultra-low-loss polymer waveguides," J. Lightwave Technol. 22,154-158, (2004). [CrossRef]
  5. L. Zuo, H. Suzuki, K. Kong, J. Si, M.M. Aye, A. Watabe and S. Takahashi, "Athermal silica based interferometer type planar lightewave circuits realized by a multicore fabrication method," Opt. Lett. 28,1046-1048, (2003). [CrossRef] [PubMed]
  6. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," J. Lightwave. Technol.,  20,1968-1975, (2002). [CrossRef]
  7. L. A. Eldada, "Polymer integrated optics: promise versus practicality," Proc of. SPIE 4642,11-22, (2002). [CrossRef]
  8. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15,3140-3148 (2007). [CrossRef] [PubMed]
  9. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. -i. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express 14,12401-12408 (2006). [CrossRef] [PubMed]
  10. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23,401-412 (2005). [CrossRef]
  11. Almeida, V. R. , Barrios, C. A. , Panepucci, R. R. , Lipson, M. , "All-optical control of light on a silicon chip," Nature 431, 1081-1084, (2004). [CrossRef] [PubMed]
  12. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12,1622-1631 (2004). [CrossRef] [PubMed]
  13. S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45,54602-54609, (2005). [CrossRef]
  14. L. Li, G. P. Nordin, J. M. English and J. Jiang, "Small-area bends and beamsplitters for low index-contrast waveguides," Opt. Express 11, (2003). [CrossRef] [PubMed]
  15. J. Cardenas, L. Li, S. Kim and G. P. Nordin, "Compact low loss single air interface bends in polymer waveguides," Opt. Express 12,5314-5324, (2004). [CrossRef] [PubMed]
  16. Y. Lin, J. Cardenas, S. Kim and G. P. Nordin, "Reduced loss through improved fabrication for single air interface bends in polymer waveguides," Opt. Express 14, (2006) [CrossRef] [PubMed]
  17. J. Ballato and S. H. Foulger and DennisW. Smith, Jr., "Optical properties of perfluorocyclobutylpolymers. II. Theoretical and experimental attenuation," J. Opt. Soc. Am., B 21, (2004). [CrossRef]
  18. J. Ballato, D. W. Smith, Jr, S. Foulger, "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. 20 (9),1838-1843 (2003). [CrossRef]
  19. D. W. SmithJr, S. Chen, S. M. Kumar, J. Ballato, C. Topping, H. V. Shah, and S. H. Foulger, "Perfluorocyclobutyl Copolymers for Microphotonics," Adv. Mater 14 (21),1585-1589 (2002) [CrossRef]
  20. Andrea Guarino, Gorazd Poberaj, Daniele Rezzonico, Riccardo Degl'Innocenti & Peter Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photonics 1,407 - 410 (2007). [CrossRef]
  21. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Contro,".Opt. Express 13,1651-1659, (2005). [CrossRef] [PubMed]
  22. T.P. White, C. M. de Streke, R.C. McPhedran, T. Huang, and L.C. Botton, "Recirculation enhanced switching in photonic crystal Mach-Zehnder interferometers," Opt. Express 12,3035-3045, (2004). [CrossRef] [PubMed]
  23. M. Izutsu, Y. Nakai and T. Sueta, "Operation mechanism of the single-mode optical-waveguide Y junction," Opt. Lett. 17,136-138, (1982). [CrossRef]
  24. D.L. Lee,Electromagnetic principles of integrated optics. (New York, John Wiley & Sons, 1986).
  25. C.T. Lee and M.L. Wu, "Apexes-Linked circle grating for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13,597-599, (2001). [CrossRef]
  26. N. Rahmanian, S. Kim, G. P. Nordin, "Anisotropic, high aspect ratio etch for perflourocyclobutyl polymers with stress relief technique," J. Vac. Sci. Technol. 24,2672-2677, (2006). [CrossRef]
  27. S. Kim, J. Cai, J. Jiang, and G. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited