OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 1 — Jan. 7, 2008
  • pp: 67–80

Demixing light paths inside disordered metamaterials

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk  »View Author Affiliations


Optics Express, Vol. 16, Issue 1, pp. 67-80 (2008)
http://dx.doi.org/10.1364/OE.16.000067


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate the first method to focus light inside disordered photonic metamaterials. In such materials, scattering prevents light from forming a geometric focus. Instead of geometric optics, we used multi-path interference to make the scattering process itself concentrate light on a fluorescent nanoscale probe at the target position. Our method uses the fact that the disorder in a solid material is fixed in time. Therefore, even disordered light scattering is deterministic. Measurements of the probes fluorescence provided the information needed to construct a specific linear combination of hundreds of incident waves, which interfere constructively at the probe.

© 2008 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 15, 2007
Revised Manuscript: December 20, 2007
Manuscript Accepted: December 21, 2007
Published: January 2, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, "Demixing light paths inside disordered metamaterials," Opt. Express 16, 67-80 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-67


Sort:  Year  |  Journal  |  Reset  

References

  1. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  4. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  5. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 1, 53-55 (2007). [CrossRef]
  6. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007). [CrossRef]
  7. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  9. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315, 1120-1122 (2007). [CrossRef] [PubMed]
  10. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004). [CrossRef] [PubMed]
  11. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, "Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations," Phys. Rev. Lett. 92, 057402 (2004). [CrossRef] [PubMed]
  12. C. W. J. Beenakker, "Random-matrix theory of quantum transport," Rev. Mod. Phys. 69, 731-808 (1997). [CrossRef]
  13. J. B. Pendry, A. MacKinnon, and P. J. Roberts, "Universality Classes and Fluctuations in Disordered Systems," Proc. R. Soc. Lond. A 437, 67-83 (1992). [CrossRef]
  14. P. Lodahl, A. P. Mosk, and A. Lagendijk, "Spatial Quantum Correlations in Multiple Scattered Light," Phys. Rev. Lett. 95, 173901 (2005). [CrossRef] [PubMed]
  15. M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, "Observation of the Critical Regime Near Anderson Localization of Light," Phys. Rev. Lett. 96, 063904 (2006). [CrossRef] [PubMed]
  16. S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle Evolution of Diffusive and Localized Waves," Phys. Rev. Lett. 99, 063902 (2007). [CrossRef] [PubMed]
  17. P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, "Spatial-field correlation: The building block of mesoscopic fluctuations," Phys. Rev. Lett. 88(12), 123901 (2002). [CrossRef] [PubMed]
  18. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered twodimensional photonic lattices," Nature 446, 52-55 (2007). [CrossRef] [PubMed]
  19. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000). [CrossRef]
  20. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  21. A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005). [CrossRef]
  22. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, 1998).
  23. F. Roddier (ed.), Adaptive Optics in Astronomy, (Cambridge University Press, U.S., 1997).
  24. "Special Issue: Advances in Retinal Imaging", J. Opt. Soc. Am. A 24, 1223-1480 (2007)
  25. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 711929-1960 (2000). [CrossRef]
  26. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys. 63, 1933-1995 (1999). [CrossRef]
  27. R. A. Fisher, ed., Optical phase conjugation (Academic Press, 1983).
  28. I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007). [CrossRef] [PubMed]
  29. M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules," Nature Biotech. 19, 631-635 (2001). [CrossRef]
  30. S. John and R. Rangarajan, "Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion," Phys. Rev. B 38, 10101 - 10104 (1988). [CrossRef]
  31. N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, "High-Resolution Surface-Wave Tomography from Ambient Seismic Noise," Science 307, 1615 (2005). [CrossRef] [PubMed]
  32. R. L. Weaver and O. I. Lobkis, "Fluctuations in diffuse field-field correlations and the emergence of the Greens function in open systems," J. Acoust. Soc. Am. 117, 3432-3439 (2005). [CrossRef] [PubMed]
  33. We thank Carlo Beenakker and John Pendry for discussions on this promising field.
  34. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, "Spatial amplitude and phase modulation using commercial twisted nematic LCDs," ArXiv.org:physics.optics/0711.4301 (2007).
  35. J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A. Lagendijk, "Optical transmission through strong scattering and highly polydisperse media," Europhys. Lett. 48, 22-28 (1999). [CrossRef]
  36. M. U. Vera and D. J. Durian, "Angular distribution of diffusely transmitted light," Phys. Rev. E 53, 3215-3224 (1996). [CrossRef]
  37. A. S. McLean and J. B. Pendry, "Beyond Diffusion to Diffraction," J. Mod. Opt. 42, 2495-2531 (1995).
  38. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed. (University Press, Oxford, 1959).
  39. S. Chandrasekhar, Radiative Transfer (Dover Publications, Inc., New York, 1960).
  40. J. W. Goodman, Statistical optics (Wiley, New York, 2000).
  41. N. Garcia and A. Z. Genack, "Crossover to strong intensity correlation for microwave radiation in random media," Phys. Rev. Lett. 63, 1678-1681 (1989). [CrossRef] [PubMed]
  42. A. D. Mirlin, R. Pnini, and B. Shapiro, "Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics," Phys. Rev. E 57, R6285-R6288 (1998). [CrossRef]
  43. B. A. van Tiggelen, A. Tip, and A. Lagendijk, "Dwell times for light and electrons," J. Phys. A 26, 1731-1748 (1993). [CrossRef]
  44. J. F. de Boer, Optical fluctuations on the transmission and reflection of mesoscopic systems (University of Amsterdam, Amsterdam, 1995).
  45. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent Backscattering of Light in Disordered Media: Analysis of the Peak Line Shape," Phys. Rev. Lett. 56, 1471-1474 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited