OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 6860–6866

Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials

E. M. Nascimento, F. A. B. F. de Moura, and M. L. Lyra  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 6860-6866 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the influence of metamaterials on the scaling laws of the transmission on multilayered structures composed of random sequences of ordinary dielectric and metamaterial layers. The spectrally averaged transmission in a frequency range around the fully transparent resonant mode is shown to decay with the total number of layers as 1/N. Such thickness dependence is faster than the 1/N1/2 decay recently reported to take place in random sequences of ordinary dielectric slabs. The interplay of strong localization and the emergence of resonant modes within the gap leads to a non-monotonous disorder dependence of the transmission that reaches a minimum at an intermediate disorder strength.

© 2008 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 28, 2008
Revised Manuscript: April 25, 2008
Manuscript Accepted: April 25, 2008
Published: April 28, 2008

E. M. Nascimento, F. A. B. F. de Moura, and M. L. Lyra, "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials," Opt. Express 16, 6860-6866 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permissivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 (1996). [CrossRef] [PubMed]
  3. P. Kolinko and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Opt. Express 11, 640 (2003). [CrossRef] [PubMed]
  4. K. Guven, M. D. Caliskan, and E. Ozbay, "Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation," Opt. Express 30, 8685 (2006). [CrossRef]
  5. Z. Tang, R. Peng, D. Fan, S. Wen, H. Zhang, and L. Qian, "Absolute left-handed behaviors in a triangular elliptical-rod photonic crystal," Opt. Express 13, 9796 (2005). [CrossRef] [PubMed]
  6. D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  7. P. Mark�?s and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express 11, 649 (2003). [CrossRef] [PubMed]
  8. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000) [CrossRef] [PubMed]
  9. J. A. Kong, B.-I. Wu, and Y. Zhang, "A unique lateral displacement of a gaussian beam transmitted through a slab with a negative permittiviy and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002). [CrossRef]
  10. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987) [CrossRef] [PubMed]
  11. L. Wu, S. He, and L. Shen, "Band structure for a one-dimensional photonic crystal containing left-handed materials," Phys. Rev. B 67, 235103 (2003) [CrossRef]
  12. J. Li, L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett. 90, 083901 (2003) [CrossRef] [PubMed]
  13. J. A. Monsoriu, R. A. Depine, M. L. Mart�??ınez-Ricci, and E. Silvestre, "Interaction between non-Bragg band gaps in 1D metamaterials photonic crystals," Opt. Express 14, 12958 (2006). [CrossRef] [PubMed]
  14. Y. Yuan, L. Ran, J. Huangfu, H. Chen, L. Shen, and J. Au Kong, "Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials," Opt. Express 14, 2220 (2006) [CrossRef] [PubMed]
  15. M. Ghulinyan, "Formation of optimal-order necklace modes in one-dimensional random photonic superlattices," Phys. Rev. A 76, 013822 (2007) [CrossRef]
  16. M. Ghulinyan, "Pediodic oscillations in transmission decay of Anderson localized one-dimensional dielectric system," Phys. Rev. Lett. 99, 063905 (2007) [CrossRef] [PubMed]
  17. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, "Optical necklace states in Anderson localized 1D systems," Phys. Rev. Lett. 94, 113903 (2005) [CrossRef] [PubMed]
  18. E. M. Nascimento, F. A. B. F. de Moura, and M. L. Lyra, "Scaling laws for the transmission of random binary dielectric multilayered structures," Phys. Rev. B 76, 115120 (2007) [CrossRef]
  19. J. Bertolotti, M. Galli, R. Sapienza, M. Ghulinyan, S. Gottardo, L. C. Andreani, L. Pavesi, and D. S. Wiersma, "Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior," Phys. Rev. E 74035602(R) (2006) [CrossRef]
  20. M. Titov and H. Schomerus, "Nonuniversality of Anderson Localization in Short-Range Correlated Disorder," Phys. Rev. Lett. 95126602 (2005) [CrossRef] [PubMed]
  21. A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran, and Y. S. Kivsharet, "Suppression of Anderson localization in disordered metamaterials," Phys. Rev. Lett. 99193902 (2007) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited