OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 6867–6876

Plasmon-polariton nano-strip resonators: from visible to infra-red

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 6867-6876 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dispersion of the resonant properties exhibited by silver and gold nano-strips in a wide range of wavelengths is considered. The tunability and Q-factor of scattering resonances as well as the field enhancement achieved at strip terminations are analyzed in the wavelength range from visible to near infrared (400–1700 nm), confirming that the resonant behaviour is dominated by dispersion properties of short-range surface-plasmon polaritons (SR-SPPs) propagating along the strip. It is found that, while the Q-factor decreases for longer wavelengths due to the SR-SPP dispersion curve moving closer to the light line, the field enhancement depending also on the metal susceptibility magnitude remains largely unaffected. The results obtained are also used to estimate the phase change involved in the SR-SPP reflection by strip terminations.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering

ToC Category:
Optics at Surfaces

Original Manuscript: March 17, 2008
Revised Manuscript: April 21, 2008
Manuscript Accepted: April 21, 2008
Published: April 29, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rather, Surface Plasmons (Springer, 1988).
  2. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007). [CrossRef]
  3. F. Wang, and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806-1-4 (2006). [CrossRef] [PubMed]
  4. K. Imura, T. Nagahara, and H. Okamoto, "Near-field imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701-1-5 (2005). [CrossRef] [PubMed]
  5. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403-1-4 (2005). [CrossRef] [PubMed]
  6. T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119-1-3 (2006). [CrossRef]
  7. F. Neubrech,  et al., "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-1-3 (2006). [CrossRef]
  8. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802-1-4 (2007). [CrossRef] [PubMed]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  10. T. Søndergaard and S. I. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B 75, 073402-1-4 (2007). [CrossRef]
  11. T. Søndergaard and S. I. Bozhevolnyi, "Metal nano-strip optical resonators," Opt. Express 15, 4198-4204 (2007). [CrossRef] [PubMed]
  12. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nanoantennas and resonators," Opt. Express 15, 10869-10877 (2007). [CrossRef] [PubMed]
  13. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant nano-strip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420-1-5 (2008). [CrossRef]
  14. T. Søndergaard, "Modeling of plasmonic nanostructures: Green�??s function integral equation methods," Phys. Status Solidi(b) 244, 3448-3462 (2007). [CrossRef]
  15. D. W. Prather, M. S. Mirotznik, and J. N. Mait, "Boundary integral methods applied to the analysis of diffractive optical elements," J. Opt. Soc. Am. A 14, 34-43 (1997). [CrossRef]
  16. J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, New York 2002).
  17. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  19. O. Svelto, Principles of Lasers (Springer, 4th ed., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited