OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 6957–6962

Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN

Junfeng Zhang, Yuping Chen, Feng Lu, and Xianfeng Chen  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 6957-6962 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we experimentally demonstrate flexible wavelength conversion, in which the input signals can be freely converted to output wavelengths through widely and arbitrarily tuning the pump wavelength within a broad second harmonic (SH) bandwidth up to 25 nm. The scheme is based on the cascaded χ (2) process in a 20-mm periodically poled MgO-doped LiNbO3 (PPMgLN). Also, wavelength broadcasting can be performed by simultaneous use of multiple pumps with wavelengths located in the broad SH bandwidth.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

Original Manuscript: January 7, 2008
Revised Manuscript: March 28, 2008
Manuscript Accepted: March 28, 2008
Published: May 1, 2008

Junfeng Zhang, Yuping Chen, Feng Lu, and Xianfeng Chen, "Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN," Opt. Express 16, 6957-6962 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 µm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561(1993) [CrossRef]
  2. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998). [CrossRef]
  3. K. Gallo, G. Assanto, and G. Stegeman, "Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides," Appl. Phys. Lett. 71, 1020-1022 (1997). [CrossRef]
  4. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 channel waveguide," IEEE Photon. Technol. Lett. 11, 653-655 (1999). [CrossRef]
  5. X. L. Zeng, X. F. Chen, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Observation of all-optical wavelength conversion based on cascaded effect in periodically poled lithium niobate waveguide," Opt. Laser Technol. 35, 187-190 (2003). [CrossRef]
  6. Y. L. Lee, C. Jung, Y. -C. Noh, M. Park, C. Byeon, D. -K. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655 (2004). [CrossRef] [PubMed]
  7. J. Wang, J. Sun, C. Lou, and Q. Sun, "Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides," Opt. Express 13, 7405-7414 (2005). [CrossRef] [PubMed]
  8. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, "Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide," OFC �??03, Atlanta, GA/USA, March 2003, 767-768.
  9. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, "Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascade SFG-DFG generation in PPLN waveguide," IEEE Photon. Technol. Lett. 19, 384-386 (2007). [CrossRef]
  10. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24,1157-1159 (1999). [CrossRef]
  11. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003). [CrossRef] [PubMed]
  12. E. Yamazaki, A. Takada, J. Yamawaku, T. Morioka, O. Tadanaga, and M. Asobe, "Simultaneous and Arbitrary Wavelength Conversion of WDM Signals Using Multiple Wavelength Quasi Phase Matched LiNbO3 waveguide," OFC �??04, Los Angels/USA, paper FL6 (2004).
  13. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002). [CrossRef]
  14. B. Zhou, C.-Q. Xu, B. Chen, Y. Nihei. A. Harada, X. F. Yang, and C. Lu, "Efficient 1.5-µm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. 40, 796-798, (2001). [CrossRef]
  15. C. -Q. Xu and B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29, 292-294 (2004). [CrossRef] [PubMed]
  16. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band," Opt. Lett. 27, 1046-1048 (2002). [CrossRef]
  17. J. Zhang, Y. Chen, F. Lu, W. Lu, W. Dang, X. Chen, and Y. Xia, "Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses," Appl. Opt. 46,7792-7796 (2007). [CrossRef] [PubMed]
  18. Y. Chen, R. Wu, X. Zeng, Y. Xia, and X. Chen, "Type-I Qaphase-matched blue secong harmonic generation with different polarization in periodically poled LiNbO3," Opt. Laser Technol. 38, 19-22 (2006). [CrossRef]
  19. D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide -doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997). [CrossRef]
  20. D. Gurkan, M. C. Hauer, A. B. Sahin, Z. Pan, S. Lee, A. E. Willner, K. R. Parameswaran, and M. M. Fejer, "Demonstration of multi-wavelength all-optical header recognition using a PPLN and optical correlators," in Proc. 27th Eur. Conf. Opt. Commun., Amsterdam The Netherlands: Sep. 30-Oct. 4 2001, Vol. 3, pp. 312-313.
  21. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-Optical Signal Processing Using �?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579-2592 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited