OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7181–7188

A metamaterial absorber for the terahertz regime: Design, fabrication and characterization

Hu Tao, Nathan I. Landy, Christopher M. Bingham, Xin Zhang, Richard D. Averitt, and Willie J. Padilla  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7181-7188 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient α=2000 cm-1. These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

© 2008 Optical Society of America

OCIS Codes
(160.1890) Materials : Detector materials
(260.5740) Physical optics : Resonance
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: March 12, 2008
Revised Manuscript: April 25, 2008
Manuscript Accepted: April 29, 2008
Published: May 2, 2008

Hu Tao, Nathan I. Landy, Christopher M. Bingham, Xin Zhang, Richard D. Averitt, and Willie J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Williams, "Filling the THz gap - high power sources and applications," Rep. Prog. Phy. 69, 301-326 (2006). [CrossRef]
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). [CrossRef]
  3. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002). [CrossRef] [PubMed]
  4. T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).
  5. F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003). [CrossRef]
  6. D. Zimdars, "Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging," Proc. SPIE 5070,108-116 (2003). [CrossRef]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005). [CrossRef]
  8. H.-B. Liu, Y. Chen, G. J. Bastiaans and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 11, 2549-2554 (2003).
  9. J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005). [CrossRef]
  10. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007). [CrossRef]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  12. H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  13. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  14. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  15. R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  16. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 86, 3996 (2000).
  17. J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett. [PubMed]
  20. D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  21. D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001). [CrossRef]
  22. G. Dolling, M. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  23. F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001). [CrossRef]
  24. F. A. Sadjadi and C. L. Chun, "Automatic detection of small objects from infrared state-of-polarization," Opt. Lett. 28, 531-533 (2003). [CrossRef] [PubMed]
  25. T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998). [CrossRef] [PubMed]
  26. J. Wauters, "Doped silicon creates new bolometer material," Laser Focus World 33, 145-149 (1997).
  27. M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001). [CrossRef]
  28. H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999). [CrossRef]
  29. L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999). [CrossRef]
  30. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).
  31. S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005). [CrossRef]
  32. A. W. M. Lee and Q. Hu, "Real-time, continuous-wave imaging by use of a microbolometer focal-plane array," Opt. Lett. 30, 2563-2565 (2005). [CrossRef] [PubMed]
  33. H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited