OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7295–7308

Vortex retarders produced from photo-aligned liquid crystal polymers

Scott C. McEldowney, David M. Shemo, and Russell A. Chipman  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7295-7308 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present developments using photo-aligned liquid crystal polymers for creating vortex retarders, halfwave retarders with a continuously variable fast axis. Polarization properties of components designed to create different polarization vortex modes are presented. We assess the viability of these components using the theoretical and experimental point spread functions and optical transfer functions in Mueller matrix format, point spread matrix (PSM) and optical transfer matrix (OTM). The measured PSM and OTM of these components in an optical system is very close to the theoretically predicted values thus showing that these components should provide excellent performance in applications utilizing polarized optical vortices. The impact of aberrations and of vortex retarder misalignment on the PSM and OTM are presented.

© 2008 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: March 21, 2008
Revised Manuscript: May 1, 2008
Manuscript Accepted: May 1, 2008
Published: May 6, 2008

Scott C. McEldowney, David M. Shemo, and Russell A. Chipman, "Vortex retarders produced from photo-aligned liquid crystal polymers," Opt. Express 16, 7295-7308 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  2. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  3. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 85, 5251-5253 (2001). [CrossRef]
  4. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for radially polarized light beam," Phys. Rev. Lett. 91, 23 (2003). [CrossRef]
  5. Totzeck,  et al., "Polarizer device for generating a defined spatial distribution of polarization states," US 2006/0028706, Feb. 9, 2006.
  6. A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements," Opt Lett 29, 238 (2004). [CrossRef] [PubMed]
  7. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002). [CrossRef] [PubMed]
  8. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light, (Cambridge University Press, seventh ed., 1999). [PubMed]
  9. Y. Mushiake, K. Matzumurra, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972). [CrossRef]
  10. T. Erdogan, K. G. Sullivan, and D. G. Hall, "Enhancement and inhibition of radiation in cylindrically symmetric, periodic structures," J. Opt. Soc. Am. B 10, 391-398 (1993). [CrossRef]
  11. T. Erdogan, O. King, W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, "Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser," Appl. Phys. Lett. 60, 1921-1923 (1992). [CrossRef]
  12. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  13. R. Oron, S. Blit, N. Davidson, and A. A. Friesem, Z. Bomzon and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phy Lett. 77, 21 (2000). [CrossRef]
  14. R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys. 28, 1730 (1989). [CrossRef]
  15. A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Opt. 46, 61-66 (2007). [CrossRef]
  16. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, "Efficient extracavity generation of radially and azimuthally polarized beams," Opt. Lett. 32, 11 (2007). [CrossRef]
  17. M. Stalder and M. Schadt, "Linear polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt Lett. 21, 23 (1996). [CrossRef]
  18. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, "Creating vortex retarders using photoaligned liquid crystal polymers," Opt. Lett. 33, 134-136 (2008). [CrossRef] [PubMed]
  19. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly "Photo-induced alignment and patterning of hybrid liquid crystalline polymer films on single substrates," Jpn. J. Appl. Phys. 34, L764-L767 (1995). [CrossRef]
  20. D. G. Hall, "Vector-beam solutions of Maxwell�??s wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  21. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: The azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  22. P. L. Greene and D. G. Hall, "Diffraction characteristics of the azimuthal Bessel-Gauss beam," J. Opt. Soc.Am. A 13, 962-966 (1996). [CrossRef]
  23. P. L. Greene and D. G. Hall, "Properties and diffraction of vector Bessel-Gauss beams," J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]
  24. C. J. R. Sheppard and S. Saghafi, "Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation," Opt. Lett. 24, 1543-1545 (1999). [CrossRef]
  25. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express. 7, 77-87, (2000). [CrossRef] [PubMed]
  26. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  27. J. P. McGuire, Jr. and R. A. Chipman, "Diffraction image formation in optical systems with polarization aberrations I: Formulation and example," J. Opt. Soc. Am A. 7, 9, 1614-1626 (1990). [CrossRef]
  28. Information on Axometrics polarimeter from http://www.axometrics.com/
  29. J. L. Pezzanitti and R. A. Chipman, "Mueller matrix imaging polarimeter," Opt. Eng. 34, 6 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited