OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7471–7480

Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials

Yoshihiko Takeda, Hiroyoshi Momida, Masato Ohnuma, Takahisa Ohno, and Naoki Kishimoto  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7471-7480 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength dispersions of third-order nonlinear optical response for Cu nanoparticle materials have been experimentally evaluated from transient spectra measured with the pump-probe method. The evaluated dispersions were analyzed on hot electron contribution using the Maxwell-Garnett approximation with the Drude model for intraband transition and first principles calculation for interband transition. The wavelength dispersion didn’t directly reflect the dispersion of a local electric field factor. The interband transition term in hot electron contribution strongly dominated the dispersion around the surface plasmon resonance by Fermi smearing. Intrinsic interband contribution to the nonlinearity was suggested from the analysis. Particle-size and host-medium dependence of the nonlinearity were also simulated.

© 2008 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: April 22, 2008
Revised Manuscript: May 6, 2008
Manuscript Accepted: May 7, 2008
Published: May 8, 2008

Yoshihiko Takeda, Hiroyoshi Momida, Masato Ohnuma, Takahisa Ohno, and Naoki Kishimoto, "Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials," Opt. Express 16, 7471-7480 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Palpant, "Third-order nonlinear optical response of metal nanoparticles," in Non-linear Optical Properties of Matter, M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, eds., (Springer, Dordrecht, 2006).
  2. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988). [CrossRef]
  3. J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000). [CrossRef]
  4. K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33, 2461-2464 (1986). [CrossRef] [PubMed]
  5. T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999). [CrossRef]
  6. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003). [CrossRef]
  7. C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004). [CrossRef]
  8. H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006). [CrossRef]
  9. Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007). [CrossRef] [PubMed]
  10. N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001). [CrossRef]
  11. Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005). [CrossRef]
  12. M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000). [CrossRef]
  13. J. S. Pedersen, "Determination of size distributions from small-angle scattering data for systems with effective hard-sphere interactions," J. Appl. Crystallogr. 27, 595-608 (1994). [CrossRef]
  14. Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999). [CrossRef]
  15. R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972). [CrossRef]
  16. C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994). [CrossRef]
  17. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge Studies in Modern Optics: 9 (Cambridge University Press, Cambridge, 1990).
  18. P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964). [CrossRef]
  19. W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965). [CrossRef]
  20. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990). [CrossRef]
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996). [CrossRef] [PubMed]
  22. G. Harbeke, Optical Properties of Solids, F. Abeles, ed., (North-Holland, Amsterdam, 1972) pp. 21-92.
  23. H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997). [CrossRef]
  24. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007). [CrossRef]
  25. H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007). [CrossRef]
  26. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  27. G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986). [CrossRef]
  28. Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited