OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7493–7498

Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal

Koji Suizu, Takayuki Shibuya, Takuya Akiba, Toshihiro Tutui, Chiko Otani, and Kodo Kawase  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 7493-7498 (2008)
http://dx.doi.org/10.1364/OE.16.007493


View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated a Čherenkov phase-matching method for monochromatic THz-wave generation using the difference frequency generation process with a lithium niobate crystal, which resulted in high conversion efficiency and wide tunability. We successfully generated monochromatic THz waves across the range 0.2–3.0 THz. We obtained efficient energy conversion in the low frequency region below 0.5 THz, and achieved a flat tuning spectrum by varying the pumping wavelength during THz-wave tuning.

© 2008 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 12, 2007
Revised Manuscript: December 27, 2007
Manuscript Accepted: December 27, 2007
Published: May 9, 2008

Citation
Koji Suizu, Takayuki Shibuya, Takuya Akiba, Toshihiro Tutui, Chiko Otani, and Kodo Kawase, "�?herenkov phase-matched monochromatic THzwave generation using difference frequency generation with a lithium niobate crystal," Opt. Express 16, 7493-7498 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972). [CrossRef]
  2. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from �?�110�?� zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994). [CrossRef]
  3. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002). [CrossRef]
  4. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003). [CrossRef]
  5. Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001). [CrossRef]
  6. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002). [CrossRef]
  7. Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005). [CrossRef]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005). [CrossRef] [PubMed]
  9. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  10. D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984). [CrossRef]
  11. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002). [PubMed]
  12. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 μJ ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]
  13. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York 2003), Chap. 2. [CrossRef]
  14. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  15. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001). [CrossRef]
  16. H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007). [CrossRef]
  17. K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982-L984 (2007). [CrossRef]
  18. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, "Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves," Opt. Lett. 31, 957-959 (2006). [CrossRef] [PubMed]
  19. Y. Sasaki, Y. Suzuki, K. Suizu, H. Ito, S. Yamaguchi, and M. Imaeda, "Surface-emitted terahertz-wave difference-frequency generation in periodically poled lithium niobate ridge-type waveguide," Jpn. J. Appl. Phys. 45, L367-369 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited