OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7525–7539

Optical bistability in photonic crystal microrings with nonlinear dielectric materials

Kazuhiko Ogusu and Kosuke Takayama  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7525-7539 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the linear resonance properties of several types of microrings in a two-dimensional photonic crystal (PC) consisting of a square lattice with air holes in dielectric using the plane-wave expansion method and the FDTD method. Moreover we investigate the nonlinear responses, especially optical bistability when an intense optical pulse is incident into the microrings. In this paper, Ag-As-Se chalcogenide glass is assumed as nonlinear dielectric, which has a high third-order nonlinearity. Although line-defect waveguides in an air-hole-type PC are usually multimoded, we can obtain interesting unique properties such as counter rotation of intracavity fields, transmission to all output ports, and unstable nonlinear oscillations in the multimoded PC microring. We can improve the resonance characteristics by partly introducing single-mode waveguides into microrings and can obtain stable optical bistability.

© 2008 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 4, 2008
Revised Manuscript: April 12, 2008
Manuscript Accepted: May 7, 2008
Published: May 9, 2008

Kazuhiko Ogusu and Kosuke Takayama, "Optical bistability in photonic crystal microrings with nonlinear dielectric materials," Opt. Express 16, 7525-7539 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters- A tutorial overview," J. Lightwave Technol. 22, 1380-1394 (2004). [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Eppen, L. C. Kimerling, and W. Greene, " Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-P. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Top. Quantum Electron. 8, 705-713 (2002). [CrossRef]
  4. Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006). [CrossRef] [PubMed]
  5. K. Ogusu, H. Shigekuni, and Y. Yokota, "Dynamic transmission properties of a nonlinear fiber ring resonator," Opt. Lett. 20, 2288-2290 (1995). [CrossRef] [PubMed]
  6. K. Ogusu, "Dynamic behavior of reflection optical bistability in nonlinear fiber ring resonator," IEEE J. Quantum Electron. 32, 1537-1543 (1996). [CrossRef]
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  8. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  9. V. D. Kumar, T. Srinivas, and A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits," Photon. Nanostruct. Fundam. Appl. 2, 199-206 (2004). [CrossRef]
  10. Z. Qiang, W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express 15, 1823-1831 (2007). [CrossRef] [PubMed]
  11. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, "A photonic crystal ring resonator formed by SOI nano-rods," Opt. Express 15, 15500-15506 (2007). [CrossRef] [PubMed]
  12. S. H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, "GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides," J. Opt. Soc. Am. B 24, 1951-1959 (2007). [CrossRef]
  13. S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. O. Kim, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett. 81, 2499-2501 (2002). [CrossRef]
  14. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, "Coupled-cavity two-dimensional photonic crystal waveguide ring laser," Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]
  15. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  16. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  17. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002). [CrossRef]
  18. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  19. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  20. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-269 (2004). [CrossRef] [PubMed]
  21. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, "Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals," Phys. Rev. B 64, 155113 (2001). [CrossRef]
  22. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  23. S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003). [CrossRef]
  24. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). [CrossRef] [PubMed]
  25. H. M. Gibbs, Optical bistability: Controlling light with light (Academic Press, 1985).
  26. H. Li and K. Ogusu, "Analysis of optical instability in a double-coupler nonlinear fiber ring resonator," Opt. Commun. 157, 27-32 (1998). [CrossRef]
  27. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  28. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  29. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," J. Lightwave Technol. 17, 2063-2077 (1999). [CrossRef]
  30. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1662 KB)     
» Media 2: AVI (3964 KB)     
» Media 3: AVI (1644 KB)     
» Media 4: AVI (1800 KB)     
» Media 5: AVI (1735 KB)     
» Media 6: AVI (1800 KB)     
» Media 7: AVI (1843 KB)     
» Media 8: AVI (1801 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited