OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7540–7550

Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks

Francesco G. Della Corte, Sandro Rao, Maria A. Nigro, Francesco Suriano, and Caterina Summonte  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7540-7550 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electro optical absorption in hydrogenated amorphous silicon (α-Si:H) - amorphous silicon carbonitride (α-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at λ=1.55 µm through the application of an electric field which induces free carrier accumulation across the multiple insulator/ semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.2100) Materials : Electro-optical materials
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: March 11, 2008
Revised Manuscript: April 23, 2008
Manuscript Accepted: April 29, 2008
Published: May 9, 2008

Francesco G. Della Corte, Sandro Rao, Maria A. Nigro, Francesco Suriano, and Caterina Summonte, "Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks," Opt. Express 16, 7540-7550 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993). [CrossRef]
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, New York 2004).
  3. G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, "Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth," IEEE Photon. Technol. Lett.  7, 363-365 (1995). [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  6. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006). [CrossRef] [PubMed]
  7. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Optical Modulators a 1.3 μm based on Free Carrier Absorption," IEEE Electron Device Lett. 12, 276-278 (1991). [CrossRef]
  8. A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, "Miniaturizable Si-based electro-optical modulator working at 1.5 μm," Appl. Phys. Lett. 86, 20115 (2005). [CrossRef]
  9. T. Tabei, Tomoki Hirata, K.  Kajikawa, and H. Sunami, "Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption," IEEE International Electron Devices Meeting, pp. 1023-1026 (2007). [CrossRef]
  10. G. Cocorullo, F. G. Della Corte, and I. Rendina, "Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition," Opt. Lett. 21, 2002-2004 (1996). [CrossRef] [PubMed]
  11. M. Okamura and S. Suzuki, "Infrared photodetection using α-Si:H photodiode," IEEE Photon. Technol. Lett.  6, 412-414 (1994). [CrossRef]
  12. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Quantum Electron 4, 997-1001 (1998). [CrossRef]
  13. B. Han, R. Orobtchouk, T. Benyattou, P. R. A. Binetti, S. Jeannot, J. M. Fedeli, and X. J. M. Leijtens, "Comparison of optical passive integrated devices based on three materials for optical clock distribution," in Proc. ECIO 07, (Copenhagen, Denmark, 2007) pp. 1-4. [PubMed]
  14. F. G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte "In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films," J. Appl. Phys. 100, 033104 (2006). [CrossRef]
  15. M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, "Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide," J. Non-Cryst. Solids 198-200, 107-110 (1996). [CrossRef]
  16. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.
  17. E. Centurioni, "Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers," Appl. Opt. 44, 7532-7539 (2005). [CrossRef] [PubMed]
  18. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal deflection spectroscopy and detection," Appl. Opt. 20, 1333 (1981). [CrossRef] [PubMed]
  19. G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A. R. Ramos, "Properties of α-Si:H TFTs using silicon carbonitride as dielectric," J. Non-Cryst. Solids 338-340, 797-801 (2004). [CrossRef]
  20. C. A. Barrios, "Electrooptic Modulation of Multisilicon-on-Insulator Photonic Wires," J. Lightwave Technol. 24, 2146-2155 (2006). [CrossRef]
  21. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (London Butterwoth, 1973).
  22. G. Cancellieri and U. Ravaioli, Measurements of Optical Fibers and Devices: Theory and Experiments (Dedham MA, Artech House 1984).
  23. R. A Street, Hydrogenated Amorphous Silicon (Cambridge University Press 1991).
  24. K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, "Switching performance of high rate deposition processing α-Si:H TFTs," J. Non-Cryst. Solids 198-200, 1137-1140 (1996). [CrossRef]
  25. Y. Chen and S. Wagner, "Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film," Appl. Phys. Lett. 75, 1125 (1999). [CrossRef]
  26. A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, K. Long, J. C. Sturm, S. R. Forrest, and S. Wagner, "High mobility nanocrystalline silicon transistors on clear plastic substrates," IEEE Electron. Device Lett. 27, 49-51 (2006). [CrossRef]
  27. M. N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, "Polysilicon TFT circuits on flexible stainless steel foils," Solid State Electron. 50, 1080-1087 (2006). [CrossRef]
  28. ATLAS device simulation software user�??s manual, SILVACO Int., Santa Clara, CA, (2005).
  29. J. Singh, "Effective mass of charge carriers in amorphous semiconductors and its applications," J. Non-Cryst. Solids 120, 295-300 (1973).
  30. F. G. Della Corte, A. Rubino, and G. Cocorullo, "Simulation study and realisation of an α-Si:H emitter on GaAs," Solid State Electron. 42, 1819-1825 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited