OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7595–7607

Mammographic texture synthesis: second-generation clustered lumpy backgrounds using a genetic algorithm

Cyril Castella, Karen Kinkel, François Descombes, Miguel P. Eckstein, Pierre-Edouard Sottas, Francis R. Verdun, and François O. Bochud  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7595-7607 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Synthetic yet realistic images are valuable for many applications in visual sciences and medical imaging. Typically, investigators develop algorithms and adjust their parameters to generate images that are visually similar to real images. In this study, we used a genetic algorithm and an objective, statistical similarity measure to optimize a particular texture generation algorithm, the clustered lumpy backgrounds (CLB) technique, and synthesize images mimicking real mammograms textures. We combined this approach with psychophysical experiments involving the judgment of radiologists, who were asked to qualify the visual realism of the images. Both objective and psychophysical approaches show that the optimized versions are significantly more realistic than the previous CLB model. Anatomical structures are well reproduced, and arbitrary large databases of mammographic texture with visual and statistical realism can be generated. Potential applications include detection experiments, where large amounts of statistically traceable yet realistic images are needed.

© 2008 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3830) Medical optics and biotechnology : Mammography
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 23, 2008
Revised Manuscript: April 10, 2008
Manuscript Accepted: April 16, 2008
Published: May 12, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Cyril Castella, Karen Kinkel, François Descombes, Miguel P. Eckstein, Pierre-Edouard Sottas, Francis R. Verdun, and François O. Bochud, "Mammographic texture synthesis: second-generation clustered lumpy backgrounds using a genetic algorithm," Opt. Express 16, 7595-7607 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992). [CrossRef]
  2. S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994). [CrossRef] [PubMed]
  3. M. P. Eckstein and J. S. Whiting, "Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast," J. Opt. Soc. Am. A 13, 1777-1787 (1996). [CrossRef]
  4. Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004). [CrossRef] [PubMed]
  5. E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).
  6. F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999). [CrossRef] [PubMed]
  7. D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007). [CrossRef]
  8. R. F. Wagner and D. G. Brown, "Unified SNR analysis of medical imaging systems," Phys. Med. Biol. 30, 489-518 (1985). [CrossRef]
  9. M. P. Eckstein, C. K. Abbey, and F. O. Bochud, "Practical guide to model observers in real and synthetic noisy backgrounds," in Handbook of Medical Imaging, Physics & Psychophysics, K. Beutel, H. Kundel, and K. Vanmetter, eds (SPIE Press, Bellingham, Washington, 2000).
  10. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, Hoboken, NJ, 2004).
  11. L. Chen and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005). [CrossRef]
  12. M. A. Kupinski, E. Clarkson, J. H. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A 20, 421-429 (2003). [CrossRef]
  13. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "Effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985). [CrossRef] [PubMed]
  14. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000). [CrossRef]
  15. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004). [CrossRef] [PubMed]
  16. C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).
  17. B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003). [CrossRef] [PubMed]
  18. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002). [CrossRef] [PubMed]
  19. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002). [CrossRef] [PubMed]
  20. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  21. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999). [CrossRef] [PubMed]
  22. D. Whitley, "A Genetic Algorithm Tutorial," Stat. Comput. 4, 65-85 (1994). [CrossRef]
  23. A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999. [CrossRef]
  24. M. Sonka, V. Hlavak, and R. Boyle, Image processing, Analysis and Machine Vision (Brooks/Cole, Pacific Grove, Ca, 1999).
  25. M. Tuceryan and A. K. Jain, "Texture Analysis," in The Handbook of Pattern Recognition and Computer Vision, C. H. Chen, L. F. Pau, and P. Wang, eds., (World Scientific Publishing Co, River Edge, NJ, 1998).
  26. R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973). [CrossRef]
  27. M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989). [CrossRef]
  28. C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990). [CrossRef] [PubMed]
  29. C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007). [CrossRef] [PubMed]
  30. Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000). [CrossRef] [PubMed]
  31. S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000). [CrossRef] [PubMed]
  32. S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999). [CrossRef] [PubMed]
  33. T. Bäck and M. Schütz. "Intelligent mutation rate control in canonical genetic algorithms," in Proceedings of the 9th International Symposium on Foundations of Intelligent Systems, number 1079 in Lectures notes in Artificial Intelligence, Z. Ras and M. Michalewicz, eds., (Springer, London, UK, 1996), pp. 158-167.
  34. American College of Radiology, Breast Imaging Reporting and Data System Atlas (American College of Radiology, Reston, Va, 2003).
  35. A. Burgess and P. Judy, "Signal detection in power-law noise: effect of spectrum exponent," J. Opt. Soc. Am. A 24, B52-B60 (2007). [CrossRef]
  36. J. R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley, Ca, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1550 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited