OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 11 — May. 26, 2008
  • pp: 7748–7755

A wavelength tunable wavefront sensor for the human eye

Silvestre Manzanera, Carmen Canovas, Pedro M. Prieto, and Pablo Artal  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7748-7755 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed and assembled an instrument for objective measurement of the eye’s wave aberrations for different wavelengths with no modifications in the measurement path. The system consists of a Hartmann-Shack wave-front sensor and a Xe-white-light lamp in combination with a set of interference filters used to sequentially select the measurement wavelength. To show the capabilities of the system and its reliability for measuring at different wavelengths, the ocular aberrations were measured in three subjects at 440, 488, 532, 633 and 694 nm, basically covering the whole visible spectrum. Even for the shortest wavelengths, the illumination level was always several orders of magnitude below the safety limits. The longitudinal chromatic aberration estimates and the wavelength dependence of coma and spherical aberration, as examples of higher-order aberration terms, were compared to the predictions of a chromatic eye model, with good agreement. To our knowledge, this is the first report of a device to objectively determine the spectral fluctuations in the ocular wavefront.

© 2008 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Vision, color, and visual optics

Original Manuscript: March 24, 2008
Revised Manuscript: May 12, 2008
Manuscript Accepted: May 13, 2008
Published: May 14, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Silvestre Manzanera, Carmen Canovas, Pedro M. Prieto, and Pablo Artal, "A wavelength tunable wavefront sensor for the human eye," Opt. Express 16, 7748-7755 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tscherning, "Die monochromatischen Abberationen des menschlichen Auges," Z. Psychol. Physiol. Sinn. 6, 456-471 (1894).
  2. M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika 6, 776-795 (1961). [PubMed]
  3. B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976). [CrossRef] [PubMed]
  4. R. H. Webb, C. M. Penney, and K. P. Thompson, "Measurement of ocular local wavefront distortion with a spatially resolved refractometer," Appl. Opt. 31, 3678-3686 (1992). [CrossRef] [PubMed]
  5. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998). [CrossRef]
  6. P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002). [CrossRef]
  7. R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, and S. A. Burns, "SSR (Spatially Resolved Refractometer): A Null-Seeking Aberrometer," Appl. Opt. 42, 736-744 (2003). [CrossRef] [PubMed]
  8. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  11. G. Walsh, W. N. Charman, and H. C. Howland, "Objective technique for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984). [CrossRef] [PubMed]
  12. R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999). [CrossRef]
  13. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000). [PubMed]
  14. S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000). [PubMed]
  15. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended source pyramid wave-front sensor for the human eye," Opt. Express 10, 419-428 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-419. [PubMed]
  16. F. Diaz-Douton, J. Pujol, M. Arjona, and S. O. Luque, "Curvature sensor for ocular wavefront measurement," Opt. Lett. 31, 2245-2247 (2006). [CrossRef] [PubMed]
  17. Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human-eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987). [CrossRef] [PubMed]
  18. P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990). [CrossRef] [PubMed]
  19. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990). [CrossRef] [PubMed]
  20. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle-psi in a population of young-adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995). [CrossRef]
  21. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999). [CrossRef]
  22. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001). [CrossRef] [PubMed]
  23. P. Artal, S. Marcos, R. Navarro, and D. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195- (1995). [CrossRef]
  24. A. Ames, Jr. and C. A. Proctor, "Dioptrics of the eye," J. Opt. Soc. Am. 5, 22-84 (1921). [CrossRef]
  25. G. Wald and D. R. Griffin, "The change in refractive power of human eye in dim and bright light," J. Opt. Soc. Am. 37, 321-336 (1947). [CrossRef] [PubMed]
  26. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957). [CrossRef] [PubMed]
  27. W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976). [CrossRef] [PubMed]
  28. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988). [CrossRef] [PubMed]
  29. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The Chromatic Eye: a new reduced eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  30. M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998). [CrossRef] [PubMed]
  31. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002). [CrossRef] [PubMed]
  32. A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002). [CrossRef] [PubMed]
  33. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007). [CrossRef]
  34. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003). [CrossRef]
  35. E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-2-400. [CrossRef] [PubMed]
  36. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1067 (1989). [CrossRef] [PubMed]
  37. International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 µm)," Health Phys. 73, 539-554 (1997). [PubMed]
  38. A. Guirao, P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955-965 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited